CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Regular Arrangement of Two-Dimensional Clusters of Blue Phosphorene on Ag(111) |
Shuo Yang1,2†, Zhenpeng Hu3†, Weihai Wang1, Peng Cheng1,2*, Lan Chen1,2*, and Kehui Wu1,2 |
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China 3School of Physics, Nankai University, Tianjin 300071, China
|
|
Cite this article: |
Shuo Yang, Zhenpeng Hu, Weihai Wang et al 2020 Chin. Phys. Lett. 37 096803 |
|
|
Abstract Two-dimensional (2D) blue phosphorene with a honeycomb structure is the phosphorus analog of graphene, and is regarded as a promising 2D material with a large tunable band gap and high charge-carrier mobility. Here, using the molecular beam epitaxy method, we synthesize monolayer blue phosphorene on the Ag(111) surface. Combined with first-principles calculations, scanning tunneling microscopy measurements reveal that the blue phosphorene on the Ag(111) surface consists of 2D clusters with a buckling $1\times 1$ lattice, arranged regularly on the Ag(111). The formation of these phosphorus clusters stems from the strain modulation induced by the lattice mismatch between blue phosphorene and the Ag(111) substrate. Moreover, x-ray photoelectron spectroscopy measurements are performed to study the instability of the blue phosphorene clusters in air. The realization of regular nanoclusters of blue phosphorene with unique sizes and morphology provides an ideal platform for the exploration of the quantum physical properties and applications of blue phosphorene.
|
|
Received: 03 June 2020
Published: 01 September 2020
|
|
PACS: |
68.37.-d
|
(Microscopy of surfaces, interfaces, and thin films)
|
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
81.05.-t
|
(Specific materials: fabrication, treatment, testing, and analysis)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
|
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2018YFE0202700, 2016YFA0300904 and 2016YFA0202301), the National Natural Science Foundation of China (Grant Nos. 11674366, 11761141013, 11674368 and 21773124), the Beijing Natural Science Foundation (Grant No. Z180007), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000). |
|
|
[1] | Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 |
[2] | Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 |
[3] | Pumera M 2009 Chem. Rec. 9 211 |
[4] | Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M and Ahn J H 2009 Nature 457 706 |
[5] | Zhao J, Liu H, Yu Z, Quhe R, Zhou S, Wang Y, Liu C C, Zhong H, Han N, Lu J, Yao Y and Wu K 2016 Prog. Mater. Sci. 83 24 |
[6] | Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507 |
[7] | Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804 |
[8] | Chen L, Li H, Feng B, Ding Z, Qiu J, Cheng P, Wu K and Meng S 2013 Phys. Rev. Lett. 110 085504 |
[9] | Sheng S, Ma R, Wu J B, Li W, Kong L, Cong X, Cao D, Hu W, Gou J, Luo J W, Cheng P, Tan P H, Jiang Y, Chen L and Wu K 2018 Nano Lett. 18 2937 |
[10] | Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S X and Gao H J 2014 Adv. Mater. 26 4820 |
[11] | Dávila M E, Xian L, Cahangirov S, Rubio A and Le Lay G 2014 New J. Phys. 16 095002 |
[12] | Derivaz M, Dentel D, Stephan R, Hanf M C, Mehdaoui A, Sonnet P and Pirri C 2015 Nano Lett. 15 2510 |
[13] | Gou J, Zhong Q, Sheng S, Li W, Cheng P, Li H, Chen L and Wu K 2016 2D Mater. 3 045005 |
[14] | Lin C H, Huang A, Pai L, Chen W, Chen T Y, Chang T R, Yukawa R, Cheng C M, Mou C Y, Matsuda I, Chiang T C, Jeng H T and Tang S J 2018 Phys. Rev. Mater. 2 024003 |
[15] | Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020 |
[16] | Gou J, Kong L, Li H, Zhong Q, Li W, Cheng P, Chen L and Wu K 2017 Phys. Rev. Mater. 1 054004 |
[17] | Yuhara J, Fujii Y, Nishino K, Isobe N, Nakatake M, Xian L, Rubio A and Le Lay G 2018 2D Mater. 5 025002 |
[18] | Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L and Wu K 2016 Nat. Chem. 8 563 |
[19] | Mannix A J, Zhou X F, Kiraly B, Wood J D, Alduein D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C and Guisinger N P 2015 Science 350 1513 |
[20] | Zhang Z H, Mannix A J, Hu Z L, Kiraly B, Guisinger N P, Hersam M C and Yakobson B I 2016 Nano Lett. 16 6622 |
[21] | Zhong Q, Kong L, Gou J, Li W, Sheng S, Yang S, Cheng P, Li H and Wu K 2017 Phys. Rev. Mater. 1 021001(R) |
[22] | Zhong Q, Zhang J, Cheng P, Feng B, Li W, Sheng S, Li H, Meng S, Chen L and Wu K 2017 J. Phys.: Condens. Matter 29 095002 |
[23] | Li W, Kong L, Chen C, Gou J, Sheng S, Zhang W, Li H, Chen L, Cheng P and Wu K 2018 Sci. Bull. 63 282 |
[24] | Kong L, Wu K and Chen L 2018 Front. Phys. 13 138105 |
[25] | Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033 |
[26] | Nilges T, Schmidt P and Weihrich R 2018 Phosphorus: The Allotropes Stability Synthesis and Selected Applications in Encyclopedia of Inorganic and Bioinorganic Chemistry (New York: American Cancer Society) |
[27] | Hultgren R, Gingrich N S and Warren B E 1935 J. Chem. Phys. 3 351 |
[28] | Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372 |
[29] | Zhang C D, Lian J C, Yi W, Jiang Y H, Liu L W, Hu H, Xiao W D, Du S X, Sun L L and Gao H J 2009 J. Phys. Chem. C 113 18823 |
[30] | Liang L, Wang J, Lin W, Sumpter B G, Meunier V and Pan M 2014 Nano Lett. 14 6400 |
[31] | Liu H, Du Y, Deng Y and Ye P D 2015 Chem. Soc. Rev. 44 2732 |
[32] | Zhu Z and Tománek D 2014 Phys. Rev. Lett. 112 176802 |
[33] | Aierken Y, Çakır D, Sevik C and Peeters F M 2015 Phys. Rev. B 92 081408(R) |
[34] | Ghosh B, Nahas S, Bhowmick S and Agarwal A 2015 Phys. Rev. B 91 115433 |
[35] | Xie J, Si M S, Yang D Z, Zhang Z Y and Xue D S 2014 J. Appl. Phys. 116 073704 |
[36] | Zhu Z, Guan J, Liu D and Tománek D 2015 ACS Nano 9 8284 |
[37] | Zhang J L, Zhao S, Han C, Wang Z, Zhong S, Sun S, Guo R, Zhou X, Gu C D, Yuan K D, Li Z and Chen W 2016 Nano Lett. 16 4903 |
[38] | Xu J P, Zhang J Q, Tian H, Xu H, Ho W and Xie M 2017 Phys. Rev. Mater. 1 061002(R) |
[39] | Zhang W, Enriquez H, Tong Y, Bendounan A, Kara A, Seitsonen A P, Mayne A J, Dujardin G and Oughaddou H 2018 Small 14 1804066 |
[40] | Tian H, Zhang J Q, Ho W, Xu J P, Xia B, Xia Y, Fan J, Xu H, Xie M and Tong S Y 2019 Matter 1 1 |
[41] | Han N, Gao N and Zhao J 2017 J. Phys. Chem. C 121 17893 |
[42] | Zeng J, Cui P and Zhang Z 2017 Phys. Rev. Lett. 118 046101 |
[43] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 |
[44] | Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 |
[45] | Kresse G and Hafner J 1993 Phys. Rev. B 48 13115 |
[46] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[47] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[48] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[49] | Zhuang J, Liu C, Gao Q, Liu Y, Feng H, Xu X, Wang J, Zhao J, Dou S X, Hu Z and Du Y 2018 ACS Nano 12 5059 |
[50] | Ge Y, Wan W, Yang F and Yao Y 2015 New J. Phys. 17 035008 |
[51] | Shan H Y, Yu Y, Zhang R, Cheng R T, Zhang D, Luo Y, Wang X L, Li B W, Zu S, Lin F, Liu Z, Chang K and Fang Z Y 2019 Mater. Today 24 10 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|