Chin. Phys. Lett.  2020, Vol. 37 Issue (9): 096801    DOI: 10.1088/0256-307X/37/9/096801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Controllable Modulation to Quantum Well States on $\beta$-Sn Islands
Ze-Rui Wang1, Chen-Xiao Zhao1, Guan-Yong Wang1, Jin Qin1, Bing Xia1, Bo Yang1, Dan-dan Guan1,2*, Shi-Yong Wang1,2, Hao Zheng1,2, Yao-Yi Li1,2, Can-hua Liu1,2, and Jin-Feng Jia1,2*
1Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2Tsung-Dao Lee Institute, Shanghai 200240, China
Cite this article:   
Ze-Rui Wang, Chen-Xiao Zhao, Guan-Yong Wang et al  2020 Chin. Phys. Lett. 37 096801
Download: PDF(1763KB)   PDF(mobile)(1753KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the surface structure and electronic properties of $\beta$-Sn islands deposited on a graphitized 6H-SiC (0001) substrate via low temperature scanning tunneling microscopy and spectroscopy. Owing to the confinement of the island geometry, quantum well states (QWSs) are formed, manifesting as equidistant peaks in the tunneling spectra. Furthermore, a distinct strip feature appears on the surfaces of odd-layer Sn islands, ranging from 15–19 layers, which is not present on the surfaces of even-layer Sn islands. The spatial distribution of strips can be modified by applying a bias pulse, using an STM tip. Furthermore, the strip-like structure shows significant impacts on the QWS. An energy splitting of the lowest unoccupied QWSs is observed in strip regions; this may be ascribed to caused the phase shift of the wave functions of the QWSs on the top surface, due to surface distortions created by the aforementioned strips.
Received: 04 July 2020      Published: 01 September 2020
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.60.Bs (Mechanical and acoustical properties)  
  68.55.-a (Thin film structure and morphology)  
  73.20.-r (Electron states at surfaces and interfaces)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11521404, 11634009, 11674222, 11674226, 11790313, 11574202, 11874256, U1632102, 11861161003 and 11874258), the National Key Research and Development Program of China (Grant Nos. 2016YFA0300403 and 2016YFA0301003), the Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB08-2), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), and the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/9/096801       OR      https://cpl.iphy.ac.cn/Y2020/V37/I9/096801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ze-Rui Wang
Chen-Xiao Zhao
Guan-Yong Wang
Jin Qin
Bing Xia
Bo Yang
Dan-dan Guan
Shi-Yong Wang
Hao Zheng
Yao-Yi Li
Can-hua Liu
and Jin-Feng Jia
[1] Moore G E 1998 Proc. IEEE 86 82
[2] Barth J V, Costantini G and Kern K 2005 Nature 437 671
[3] Jia J F, Li S C, Zhang Y F and Xue Q K 2007 J. Phys. Soc. Jpn. 76 082001
[4] Guo Y, Zhang Y F, Bao X Y et al. 2004 Science 306 1915
[5] Qi Y, Ma X C, Jiang P et al. 2007 Appl. Phys. Lett. 90 013109
[6] Zhang Y F, Li S C, Ma X C et al. 2006 Front. Phys. Chin. 1 323
[7] Li S C, Ma X C, Jia J F et al. 2006 Phys. Rev. B 74 075410
[8] Calleja F, Passeggi M C G, de Parga A L V et al. 2006 Phys. Rev. Lett. 97 186104
[9] Jaklevic R C, Lambe J, Mikkor M and Vassell W C 1971 Phys. Rev. Lett. 26 88
[10] Wang L L, Ma X C, Ning Y X et al. 2009 Appl. Phys. Lett. 94 153111
[11] Wang L L, Ma X C, Ji S H et al. 2008 Phys. Rev. B 77 205410
[12] Lu S M, Yang M C, Su W B et al. 2007 Phys. Rev. B 75 113402
[13] Kawakami R K, Rotenberg E, Choi H J et al. 1999 Nature 398 132
[14] Silkin I V, Koroteev Y M, Echenique P M and Chulkov E V 2017 Materials 10 1409
[15] Rybkin A G, Shikin A M, Varykhalov A et al. 2012 Phys. Rev. B 85 045425
[16] Tao B S, Wan C H, Tang P, Feng J F et al. 2019 Nano Lett. 19 3019
[17] Yoshimatsu K, Horiba K, Kumigashira H et al. 2011 Science 333 319
[18] Zhang Y F, Jia J F, Tang Z et al. 2005 Surf. Sci. 596 L331
[19] Hupalo M and Tringides M 2002 Phys. Rev. B 65 115406
[20] Bao X Y, Zhang Y F, Wang Y P et al. 2005 Phys. Rev. Lett. 95 247005
[21] Ma X C, Jiang P, Qi Y et al. 2007 Proc. Natl. Acad. Sci. USA 104 9204
[22]Yu X Z, Hwang C G, Jozwiak C M et al. 2011 J. Elspec 184 100
[23] Li Y Y, Liu M, Ma D Y et al. 2009 Phys. Rev. Lett. 103 076102
[24] Li A M, Dong L, Yang X Y et al. 2018 Chin. Phys. Lett. 35 066802
[25] Ryu J T, Katayama M and Oura K 2002 Surf. Sci. 515 199
[26] Eom D, Qin S, Chou M Y and Shih C K 2006 Phys. Rev. Lett. 96 027005
[27] Echenique P M and Pendry J B 1978 J. Phys. C 11 2065
[28] Matsuda I, Ohta T and Yeom H W 2002 Phys. Rev. B 65 085327
Related articles from Frontiers Journals
[1] Miao Xu, Changwei Zou, Benchao Gong, Ke Jia, Shusen Ye, Zhenqi Hao, Kai Liu, Youguo Shi, Zhong-Yi Lu, Peng Cai, and Yayu Wang. Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies[J]. Chin. Phys. Lett., 2023, 40(3): 096801
[2] Hexu Zhang, Yuanhao Lyu, Wenqi Hu, Lan Chen, Yi-Qi Zhang, and Kehui Wu. Dehydrogenation Induced Formation of Chiral Core-Shell Arrays of Melamine on Ag(111)[J]. Chin. Phys. Lett., 2022, 39(11): 096801
[3] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 096801
[4] Chaofei Liu and Jian Wang. Spectroscopic Evidence for Electron Correlations in Epitaxial Bilayer Graphene with Interface-Reconstructed Superlattice Potentials[J]. Chin. Phys. Lett., 2022, 39(7): 096801
[5] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 096801
[6] Jia-Qi Guan, Li Wang, Pengdong Wang, Wei Ren, Shuai Lu, Rong Huang, Fangsen Li, Can-Li Song, Xu-Cun Ma, and Qi-Kun Xue. Honeycomb Lattice in Metal-Rich Chalcogenide Fe$_{2}$Te[J]. Chin. Phys. Lett., 2021, 38(11): 096801
[7] Xuedong Xie, Dongjing Lin, Li Zhu, Qiyuan Li, Junyu Zong, Wang Chen, Qinghao Meng, Qichao Tian, Shao-Chun Li, Xiaoxiang Xi, Can Wang, and Yi Zhang. Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe$_{2}$ Films[J]. Chin. Phys. Lett., 2021, 38(10): 096801
[8] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 096801
[9] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 096801
[10] Shuo Yang, Zhenpeng Hu, Weihai Wang, Peng Cheng, Lan Chen, and Kehui Wu. Regular Arrangement of Two-Dimensional Clusters of Blue Phosphorene on Ag(111)[J]. Chin. Phys. Lett., 2020, 37(9): 096801
[11] Qian-Qian Yuan, Zhaopeng Guo, Zhi-Qiang Shi, Hui Zhao, Zhen-Yu Jia, Qianjin Wang, Jian Sun, Di Wu, and Shao-Chun Li. Ferromagnetic MnSn Monolayer Epitaxially Grown on Silicon Substrate[J]. Chin. Phys. Lett., 2020, 37(7): 096801
[12] Xuguang Wang, Bingyu Xia, Jian Gou, Peng Cheng, Yong Xu, Lan Chen, Kehui Wu. Symmetry Breaking and Reversible Hydrogenation of Two-Dimensional Semiconductor Sn$_{2}$Bi[J]. Chin. Phys. Lett., 2020, 37(6): 096801
[13] Xuguang Wang, Bingyu Xia, Jian Gou, Peng Cheng, Yong Xu, Lan Chen, Kehui Wu. Symmetry Breaking and Reversible Hydrogenation of Two-Dimensional Semiconductor Sn$_{2}$Bi *[J]. Chin. Phys. Lett., 0, (): 096801
[14] An-Ning Dong, Li-Huan Sun, Xiang-Qian Tang, Yi-Kun Yao, Yang An, Dong Hao, Xin-Yan Shan, Xing-Hua Lu. Observation of Simplest Water Chains on Surface Stabilized by a Hydroxyl Group at One End[J]. Chin. Phys. Lett., 2019, 36(11): 096801
[15] Rui-Zhe Liu, Xiong Huang, Ling-Xiao Zhao, Li-Min Liu, Jia-Xin Yin, Rui Wu, Gen-Fu Chen, Zi-Qiang Wang, Shuheng H. Pan. Experimental Observations Indicating the Topological Nature of the Edge States on HfTe$_{5}$[J]. Chin. Phys. Lett., 2019, 36(11): 096801
Viewed
Full text


Abstract