CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Enhancement of Curie Temperature under Built-in Electric Field in Multi-Functional Janus Vanadium Dichalcogenides |
Shilei Ji , Hong Wu , Shuang Zhou , Wei Niu , Lujun Wei , Xing-Ao Li , Feng Li*, and Yong Pu* |
New Energy Technology Engineering Laboratory of Jiangsu Provence & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China |
|
Cite this article: |
Shilei Ji , Hong Wu , Shuang Zhou et al 2020 Chin. Phys. Lett. 37 087505 |
|
|
Abstract Functionalized two-dimensional materials with multiferroicity are highly desired to be next-generation electronic devices. Here we theoretically predict a family of Janus vanadium dichalcogenides VXX' (X/X' = S, Se, Te) monolayers with multiferroic properties, combing ferromagnetism, ferroelasticity and piezoelectricity. Due to the unpaired electrons on the V atom, the Janus VXX' monolayers have intrinsic long-range ferromagnetic orders. Particularly, the Curie temperature of 1T-VSeTe monolayer is up to 100 K, which is greatly higher than 2D 1T-VSe$_{2}$ and 1T-VTe$_{2}$. Furthermore, the six Janus VXX' monolayers have similar crater-like ferroelastic switching curves. Compared to black phosphorus, 2H-VSSe monolayer has the similar ferroelastic switching signal and 4 times lower energy barrier. In addition, the out-of-plane piezoelectricity induced by the structure asymmetry in the vertical direction gives the 2H-VXX' monolayers the potential to be piezoelectric materials. It is found that a built-in electric field in the vertical direction due to the different electronegativity values of chalcogen atoms induces the changes of electronic structures, which leads to the appearance of three different types of band gaps in the three H-phase structures. Recently, the experimental growth of the Janus MoSSe monolayers and the electrochemical exfoliation of ferromagnetic monolayered VSe$_{2}$ make the Janus VXX' monolayers possibly fabricated in experiments.
|
|
Received: 09 April 2020
Published: 28 July 2020
|
|
PACS: |
75.30.Kz
|
(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))
|
|
75.85.+t
|
(Magnetoelectric effects, multiferroics)
|
|
77.55.Nv
|
(Multiferroic/magnetoelectric films)
|
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 61704083, 61605087 and 61874060), the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20160881 and BK20181388), and the Foundation of Nanjing University of Posts and Telecommunications (Grant No. NY219030). |
|
|
[1] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 |
[2] | Hu H, Zavabeti A, Quan H, Zhu W, Wei H, Chen D and Ou J Z 2019 Biosens. Bioelectron. 142 111573 |
[3] | Nair R R, Tsai I L, Sepioni M, Lehtinen O, Keinonen J, Krasheninnikov A V, Castro Neto A H, Katsnelson M I, Geim A K and Grigorieva I V 2013 Nat. Commun. 4 2010 |
[4] | McCreary K M, Swartz A G, Han W, Fabian J and Kawakami R K 2012 Phys. Rev. Lett. 109 186604 |
[5] | Ugeda M M, Brihuega I, Guinea F and Gomez-Rodriguez J M 2010 Phys. Rev. Lett. 104 096804 |
[6] | Červenka J, Katsnelson M I and Flipse C F J 2009 Nat. Phys. 5 840 |
[7] | Uchoa B, Kotov V N, Peres N M and Castro Neto A H 2008 Phys. Rev. Lett. 101 026805 |
[8] | Yazyev O V and Helm L 2007 Phys. Rev. B 75 125408 |
[9] | Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263 |
[10] | Choi Y H, Kwon G H, Jeong J H, Jeong K S, Kwon H, An Y, Kim M, Kim H, Yi Y, Im S and Cho M H 2019 Appl. Surf. Sci. 494 37 |
[11] | Huang W, Yin Y and Li X 2018 Appl. Phys. Rev. 5 041110 |
[12] | Hu T and Kan E 2019 Wiley Interdisciplinary Rev.: Comput. Mol. Sci. 9 e1409 |
[13] | Gong C, Kim E M, Wang Y, Lee G and Zhang X 2019 Nat. Commun. 10 2657 |
[14] | Sun W, Wang W, Chen D, Cheng Z and Wang Y 2019 Nanoscale 11 9931 |
[15] | Zhang F, Mi W and Wang X 2019 Nanoscale 11 10329 |
[16] | Wang Z, Tang C, Sachs R, Barlas Y and Shi J 2015 Phys. Rev. Lett. 114 016603 |
[17] | Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X D 2017 Nature 546 270 |
[18] | Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 |
[19] | Huang C, Feng J, Wu F, Ahmed D, Huang B, Xiang H, Deng K and Kan E 2018 J. Am. Chem. Soc. 140 11519 |
[20] | Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94 |
[21] | Yu W, Li J, Herng T S, Wang Z, Zhao X, Chi X, Fu W, Abdelwahab I, Zhou J, Dan J, Chen Z, Chen Z, Li Z, Lu J, Pennycook S J, Feng Y P, Ding J and Loh K P 2019 Adv. Mater. 31 1903779 |
[22] | Zhou J, Qiao J, Duan C G, Bournel A, Wang K L and Zhao W 2019 ACS Appl. Mater. & Interfaces 11 17647 |
[23] | Esters M, Hennig R G and Johnson D C 2017 Phys. Rev. B 96 235147 |
[24] | Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol. 13 289 |
[25] | Feng S and Mi W 2018 Appl. Surf. Sci. 458 191 |
[26] | Zhang W, Zhang L, Wong P K J, Yuan J, Vinai G, Torelli P, van der Laan G, Feng Y P and Wee A T S 2019 ACS Nano 13 8997 |
[27] | Coelho P M, Nguyen Cong K, Bonilla M, Kolekar S, Phan M H, Avila J, Asensio M C, Oleynik I I and Batzill M 2019 J. Phys. Chem. C 123 14089 |
[28] | Chen P, Pai W W, Chan Y H, Madhavan V, Chou M Y, Mo S K, Fedorov A V and Chiang T C 2018 Phys. Rev. Lett. 121 196402 |
[29] | Wang B, Zhang X, Zhang Y, Yuan S, Guo Y, Dong S and Wang J 2020 Mater. Horiz. 7 1623 |
[30] | Tu Z and Wu M 2020 Sci. Bull. 65 147 |
[31] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[32] | Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 |
[33] | Blochl P E 1994 Phys. Rev. B 50 17953 |
[34] | Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 |
[35] | King-Smith R D and Vanderbilt D 1993 Phys. Rev. B 47 1651 |
[36] | Vanderbilt D 2000 J. Phys. Chem. Solids 61 147 |
[37] | Togo A and Tanaka I 2015 Scr. Mater. 108 1 |
[38] | Liu L, Ren X, Xie J, Cheng B, Liu W, An T, Qin H and Hu J 2019 Appl. Surf. Sci. 480 300 |
[39] | Yang J, Wang A, Zhang S, Liu J, Zhong Z and Chen L 2019 Phys. Chem. Chem. Phys. 21 132 |
[40] | Zhang C, Nie Y, Sanvito S and Du A 2019 Nano Lett. 19 1366 |
[41] | Lado J L, Fernández-Rossier J 2017 2D Mater. 4 035002 |
[42] | Xu X, Ma Y, Huang B and Dai Y 2019 Phys. Chem. Chem. Phys. 21 7440 |
[43] | Salje E K H 2012 Annu. Rev. Mater. Res. 42 265 |
[44] | Wang C, Ke X, Wang J, Liang R, Luo Z, Tian Y, Yi D, Zhang Q, Wang J, Han X F, Van Tendeloo G, Chen L Q, Nan C W, Ramesh R and Zhang J 2016 Nat. Commun. 7 10636 |
[45] | Zhu H, Wang Y, Xiao J, Liu M, Xiong S, Wong Z J, Ye Z, Ye Y, Yin X and Zhang X 2015 Nat. Nanotechnol. 10 151 |
[46] | Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz T F, Hone J and Wang Z L 2014 Nature 514 470 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|