Chin. Phys. Lett.  2020, Vol. 37 Issue (8): 087504    DOI: 10.1088/0256-307X/37/8/087504
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Unexpectedly Strong Diamagnetism of Self-Assembled Aromatic Peptides
Haijun Yang1,2, Zixin Wang3, Liuhua Mu2, Yongshun Song4, Jun Hu1, Feng Zhang3,5*, and Haiping Fang4,1*
1Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
2Division of Interfacial Water, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
3State Key Laboratory of Respiratory Disease, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
4School of Science, East China University of Science and Technology, Shanghai 200237, China
5Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, Hohhot 010011, China
Cite this article:   
Haijun Yang, Zixin Wang, Liuhua Mu et al  2020 Chin. Phys. Lett. 37 087504
Download: PDF(471KB)   PDF(mobile)(483KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract There is a considerable amount of work that shows the biomagnetism of organic components without ferromagnetic components at the molecular level, but it is of great challenge to cover the giant gap of biomagnetism between their experimental and theoretical results. Here we show that the diamagnetism of aromatic peptides is greatly enhanced for about 11 times by self-assembling, reaching two orders of magnitude higher than the mass susceptibility of pure water. The self-assembly of aromatic rings in the peptide molecules plays the key role in such a strong diamagnetism.
Received: 28 June 2020      Published: 09 July 2020
PACS:  75.90.+w (Other topics in magnetic properties and materials)  
  87.90.+y (Other topics in biological and medical physics)  
  87.14.ef (Peptides)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. U1632135, 11974366, U1932123, 51763019 and U1832125), the Key Research Program of Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH053), and the Fundamental Research Funds for the Central Universities.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/8/087504       OR      https://cpl.iphy.ac.cn/Y2020/V37/I8/087504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Haijun Yang
Zixin Wang
Liuhua Mu
Yongshun Song
Jun Hu
Feng Zhang
and Haiping Fang
[1] Crease R 1989 Science 245 1041
[2]Hobbie R K and Roth B J 2007 Intermediate Physics for Medicine and Biology (New York: Springer) p 203
[3]Lorant S J S 1977 Biomagnetism: A Review pSLAC-PUB-1984
[4] Tao Q, Zhang L, Han X, Chen H, Ji X and Zhang X 2020 Biophys. J. 118 578
[5] A   Hill R J, Sedman V L, Allen S, Williams P, Paoli M, Adler-Abramovich L, Gazit E, Eaves L and Tendler S J B 2007 Adv. Mater. 19 4474
[6] Kwon S, Kim B J, Lim H K, Kang K, Yoo S H, Gong J, Yoon E, Lee J, Choi I S, Kim H and Lee H S 2015 Nat. Commun. 6 8747
[7] Pauling L 1979 Proc. Natl. Acad. Sci. USA 76 2293
[8] Worcester D L 1978 Proc. Natl. Acad. Sci. USA 75 5475
[9] Nakamae S, Cazayous M, Sacuto A, Monod P and Bouchiat H 2005 Phys. Rev. Lett. 94 248102
[10] Nanni G, Petroni S, Fragouli D, Amato M, De Vittorio M and Athanassiou A 2012 Microelectron. Eng. 98 607
[11] Gong N J, Dibb R, Bulk M, van der Weerd L and Liu C 2019 NeuroImage 191 176
[12] Jones K M, Pollard A C and Pagel M D 2018 J. Magn. Reson. Imaging 47 11
[13] Abdulkader S N, Atia A and Mostafa M S M 2015 Egypt. Inf. J. 16 213
Related articles from Frontiers Journals
[1] Kangkang Li. Topological Magnons in Kitaev Magnets with Finite Dzyaloshinskii–Moriya Interaction at High Field[J]. Chin. Phys. Lett., 2023, 40(2): 087504
[2] Kang-Kang Li, Jiang-Ping Hu. Weyl and Nodal Ring Magnons in Three-Dimensional Honeycomb Lattices[J]. Chin. Phys. Lett., 2017, 34(7): 087504
[3] ZHU Xiao-Xi, LIU Jing-Hua, JIANG Cheng-Bao. Elastic Modulus of Fe72.5Ga27.5 Magnetostrictive Alloy[J]. Chin. Phys. Lett., 2010, 27(6): 087504
[4] YAN Zi-Jie, YUAN Xiao, GAO Guo-Mian, LUO Bing-Cheng, JIN Ke-Xin, CHEN Chang-Le. Photoinduced Resistance Change in an Oxygen-Deficient La 0.9 Sr 0.1 MnO 3-δ Thin Film[J]. Chin. Phys. Lett., 2007, 24(5): 087504
[5] WU Da-Jian, WU Xue-Wei, LIU Xiao-Jun. Photoinduced Charge-Ordering Fluctuation in Wide-Bandwidth La0.7Sr0.3MnO3 Films[J]. Chin. Phys. Lett., 2006, 23(7): 087504
[6] SHI Shang-Chun, MENG Chuan-Min, HE Hong-Liang, DONG Shi, ZHAO Feng. Design and Parameter Analysis for Explosive-Driven Demagnetization Pulsed Power Source[J]. Chin. Phys. Lett., 2006, 23(2): 087504
[7] LIU Xiao-Jun. Modulation of Electric Current on Photoinduced Spin-Disorder in a Manganite Film[J]. Chin. Phys. Lett., 2005, 22(10): 087504
[8] FANG Wen-Xiao, HE Zhen-Hui, XU Xue-Qing, SHEN Hui. Aligned Structures of Fe3O4 Nanoparticles in a Curable Polymer Carrier Induced by a Magnetic Field[J]. Chin. Phys. Lett., 2005, 22(9): 087504
[9] ZHAO Yue-gang, LI Bo-zang. Quantum Phases of Pancharatnam Type for a General Spin in a Time-Dependent Magnetic Field[J]. Chin. Phys. Lett., 1997, 14(11): 087504
[10] LIU Wuming, ZHOU Benlian. Solitary Magnon Localization in Antiferromagnet Ni( C2H8N2)2NO2C1O4[J]. Chin. Phys. Lett., 1994, 11(7): 087504
Viewed
Full text


Abstract