CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Structure-Spin-Transport Anomaly in Quasi-One-Dimensional Ba$_{9}$Fe$_{3}$Te$_{15}$ under High Pressure |
Jun Zhang1,2,3†, Mei-Ling Jin1,8†, Xiang Li4†, Xian-Cheng Wang2*, Jian-Fa Zhao2,3, Ying Liu5, Lei Duan2,3, Wen-Min Li2,3, Li-Peng Cao2, Bi-Juan Chen1, Li-Juan Wang1, Fei Sun1, Yong-Gang Wang1, Liu-Xiang Yang1, Yu-Ming Xiao6, Zheng Deng2, Shao-Min Feng2, Chang-Qing Jin2,3,7*, and Jin-Long Zhu1,8* |
1Center for High Pressure Science & Technology Advanced Research, Beijing 100094, China 2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 3School of Physics, University of Chinese Academy of Sciences, Beijing 100190, China 4Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), School of Physics, Beijing Institute of Technology, Beijing 100081, China 5Xi'an Modern Chemistry Research Institute, Xi'an 710065, China 6High Pressure Collaborative Access Team (HPCAT), Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA 7Songshan Lake Materials Laboratory, Dongguan 523808, China 8Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
|
|
Cite this article: |
Jun Zhang, Mei-Ling Jin, Xiang Li et al 2020 Chin. Phys. Lett. 37 087106 |
|
|
Abstract Recently, a series of novel compounds Ba$_{3}$MX$_{5}$ (M = Fe, Ti, V; X = Se, Te) with hexagonal crystal structures composed of quasi-1-dimensional (1D) magnetic chains has been synthesized by our research team using high-pressure and high-temperature methods. The initial hexagonal phases persist to the maximum achievable pressure, while spin configurations and magnetic interactions may change dramatically as a result of considerable reductions in interchain separations upon pressurization. These compounds therefore offer unique possibilities for studying the evolution of intrinsic electronic structures in quasi-1D magnetic systems. Here we present a systematic investigation of Ba$_{9}$Fe$_{3}$Te$_{15}$, in which the interchain separations between trimerized 1D chains ($\sim $10.2 Å) can be effectively modulated by external high pressure. The crystal structure especially along the 1D chains exhibits an abnormal expansion at $\sim $5 GPa, which accompanies trimerization entangled anomalous mixed-high-low spin transition. An insulator-metal transition has been observed under high pressure as a result of charge-transfer gap closing. Pressure-induced superconductivity emerges at 26 GPa, where the charge-transfer gap fully closes, 3D electronic configuration forms and local spin fully collapses.
|
|
Received: 22 June 2020
Published: 19 July 2020
|
|
PACS: |
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
74.62.Fj
|
(Effects of pressure)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. U1930401, 11974410, 11820101003, 11921004 and 11534016), and the National Key R&D Program of China (Grant Nos. 2018YFA0305703, 2018YFA0305700 and 2017YFA0302900). |
|
|
[1] | Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G and Shibauchi T 2016 Nat. Commun. 7 12146 |
[2] | Wu H, Zhou Y H, Yuan Y F, Chen C H, Zhou Y, Zhang B W, Chen X L, Gu C C, An C, Wang S Y, Qi M Y, Zhang R R, Zhang L L, Li X J and Yang Z R 2019 Chin. Phys. Lett. 36 107101 |
[3] | Liu Z Y, Dong Q X, Shan P F, Wang Y Y, Dai J H, Jana R, Chen K Y, Sun J P, Wang B S, Yu X H, Liu G T, Uwatoko Y, Sui Y, Yang H X, Chen G F and Cheng J G 2020 Chin. Phys. Lett. 37 047102 |
[4] | Pouget J P, Regnault L P, Ain M, Hennion B, Renard J P, Veillet P, Dhalenne G and Revcolevschi A 1994 Phys. Rev. Lett. 72 4037 |
[5] | Zhang J, Jia Y, Wang X, Li Z, Duan L, Li W, Zhao J, Cao L, Dai G, Deng Z, Zhang S, Feng S, Yu R, Liu Q, Hu J, Zhu J and Jin C 2019 NPG Asia Mater. 11 11 |
[6] | Zhang J, Wang X C, Adroja D T, Silva I d, Khalyavin D, Sannigrahi J, Nair H S, Duan L, Zhao J F, Deng Z, Yu R Z, Shen X, Yu R C, Zhao H, Zhao J M, Long Y W, Zhu J L, Hu Z W, Lin H J, Chen C T, Wu W and Jin C Q 2020 (submitted) |
[7] | Zhang J, Duan L, Wang Z, Wang X, Zhao J, Jin M, Li W, Zhang C, Cao L, Deng Z, Hu Z, Agrestini S, Valvidares M, Lin H J, Chen C T, Zhu J and Jin C 2020 Inorg. Chem. 59 5377 |
[8] | Zhang J, Liu M, Wang X C, Zhao K, Li W M, Duan L, hao J F, Cao L P, Dai G Y, Deng Z, Zhang S J, Feng S M, Liu Q Q, Yang Y F and Jin C Q 2018 J. Phys.: Condens. Matter 30 214001 |
[9] | Zhang J, Hao Y, Wang X, Liu M, Yang Y, Duan L, Jin M, Li W, Zhao J Z, Cao L, Deng Z, Zhu J and Jin C 2020 (submitted) |
[10] | Koga A 2002 Phys. Lett. A 296 243 |
[11] | Nakamura H, Yamasaki T, Giri S, Imai H, Shiga M, Kojima K, Nishi M, Kakurai K and Metoki N 2000 J. Phys. Soc. Jpn. 69 2763 |
[12] | Kelber J, Aldred A T, Lander G H, Mueller M H, Massenet O and Stucky G D 1980 J. Solid State Chem. 32 351 |
[13] | Gauzzi F L A , Barisic N, Calestani G L, Bolzoni F, Gilioli E, Marezio M, Sanna A, Franchini C and Forro L 2003 Int. J. Mod. Phys. B 17 3503 |
[14] | Yamasaki T, Nakamura H and Shiga M 2000 J. Phys. Soc. Jpn. 69 3068 |
[15] | Graf T, Mandrus D, Lawrence J M, Thompson J D, Canfield P C, Cheong S W and Rupp L W 1995 Phys. Rev. B 51 2037 |
[16] | Forro L, Gaal R, Berger H, Fazekas P, Penc K, Kezsmarki I and Mihaly G 2000 Phys. Rev. Lett. 85 1938 |
[17] | Takahashi H, Sugimoto A, Nambu Y, Yamauchi T, Hirata Y, Kawakami T, Avdeev M, Matsubayashi K, Du F, Kawashima C, Soeda H, Nakano S, Uwatoko Y, Ueda Y, Sato T J and Ohgushi K 2015 Nat. Mater. 14 1008 |
[18] | Yamauchi T, Hirata Y, Ueda Y and Ohgushi K 2015 Phys. Rev. Lett. 115 246402 |
[19] | Ying J, Lei H, Petrovic C, Xiao Y and Struzhkin V V 2017 Phys. Rev. B 95 241109 |
[20] | larson A C and Dreele R B V O N 2000 Los Alamos National Laboratory Report Laur 86 |
[21] | Vankó G, Neisius T, Molnár G, Renz F, Kárpáti S, Shukla A and de Groot F M F 2006 J. Phys. Chem. B 110 11647 |
[22] | Rueff J P and Kao C C 1999 Phys. Rev. Lett. 82 3284 |
[23] | Peng G, Wang X, Randall C R, Moore J A and Cramer S P 1994 Appl. Phys. Lett. 65 2527 |
[24] | http://abulafia.mt.ic.ac.uk/shannon/ptable.php |
[25] | Duan L, Zhang J, Wang X, Zhao J, Cao L, Li W, Deng Z, Yu R, Li Z and Jin C 2020 J. Alloys Compd. 831 154697 |
[26] | Zaanen J, Sawatzky G A and Allen J W 1985 Phys. Rev. Lett. 55 418 |
[27] | Chen A 1993 PhD Thesis (University of California) |
[28] | Giesekus A and Falicov L M 1991 Phys. Rev. B 44 10449 |
[29] | Si Q and Abrahams E 2008 Phys. Rev. Lett. 101 |
[30] | Yu R and Si Q M 2013 Phys. Rev. Lett. 110 146402 |
[31] | de' Medici L, Giovannetti G and Capone M 2014 Phys. Rev. Lett. 112 177001 |
[32] | Werthamer N R, Helfand E and Hohenberg P C 1966 Phys. Rev. 147 295 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|