CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Symmetry-Assisted Protection and Compensation of Hidden Spin Polarization in Centrosymmetric Systems |
Yingjie Zhang1†, Pengfei Liu1†, Hongyi Sun1†, Shixuan Zhao1, Hu Xu1, and Qihang Liu1,2,3* |
1Shenzhen Institute for Quantum Science and Technology and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China 2Guangdong Provincial Key Laboratory for Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, China 3Center for Quantum Computing, Peng Cheng Laboratory, Shenzhen 518055, China
|
|
Cite this article: |
Yingjie Zhang, Pengfei Liu, Hongyi Sun et al 2020 Chin. Phys. Lett. 37 087105 |
|
|
Abstract It was recently noted that in certain nonmagnetic centrosymmetric compounds, spin–orbit interactions couple each local sector that lacks inversion symmetry, leading to visible spin polarization effects in the real space, dubbed “hidden spin polarization (HSP)”. However, observable spin polarization of a given local sector suffers interference from its inversion partner, impeding material realization and potential applications of HSP. Starting from a single-orbital tight-binding model, we propose a nontrivial way to obtain strong sector-projected spin texture through the vanishing hybridization between inversion partners protected by nonsymmorphic symmetry. The HSP effect is generally compensated by inversion partners near the ${\varGamma}$ point but immune from the hopping effect around the boundary of the Brillouin zone. We further summarize 17 layer groups that support such symmetry-assisted HSP and identify hundreds of quasi-2D materials from the existing databases by first-principle calculations, among which a group of rare-earth compounds LnIO (Ln = Pr, Nd, Ho, Tm, and Lu) serves as great candidates showing strong Rashba- and Dresselhaus-type HSP. Our findings expand the material pool for potential spintronic applications and shed light on controlling HSP properties for emergent quantum phenomena.
|
|
Received: 23 June 2020
Published: 21 July 2020
|
|
PACS: |
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
61.50.Ah
|
(Theory of crystal structure, crystal symmetry; calculations and modeling)
|
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 11874195), the Guangdong Provincial Key Laboratory of Computational Science and Material Design (Grant No. 2019B030301001), and the Center for Computational Science and Engineering of SUSTech. |
|
|
[1] | Winkler R 2003 Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Berlin, Heidelberg: Springer) Vol. 191 |
[2] | Zhang X, Liu Q, Luo J W, Freeman A J and Zunger A 2014 Nat. Phys. 10 387 |
[3] | Liu Q, Zhang X and Zunger A 2015 Phys. Rev. Lett. 114 087402 |
[4] | Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343 |
[5] | Liu Q, Guo Y and Freeman A J 2013 Nano Lett. 13 5264 |
[6] | Liu Q, Zhang X and Zunger A 2016 Phys. Rev. B 93 174119 |
[7] | Riley J M, Mazzola F, Dendzik M, Michiardi M, Takayama T, Bawden L, Granerød C, Leandersson M, Balasubramanian T and Hoesch M 2014 Nat. Phys. 10 835 |
[8] | Yao W, Wang E, Huang H, Deng K, Yan M, Zhang K, Miyamoto K, Okuda T, Li L and Wang Y 2017 Nat. Commun. 8 14216 |
[9] | Razzoli E, Jaouen T, Mottas M L, Hildebrand B, Monney G, Pisoni A, Muff S, Fanciulli M, Plumb N C and Rogalev V A 2017 Phys. Rev. Lett. 118 086402 |
[10] | Wu S L, Sumida K, Miyamoto K, Taguchi K, Yoshikawa T, Kimura A, Ueda Y, Arita M, Nagao M and Watauchi S 2017 Nat. Commun. 8 1919 |
[11] | Gotlieb K, Lin C Y, Serbyn M, Zhang W, Smallwood C L, Jozwiak C, Eisaki H, Hussain Z, Vishwanath A and Lanzara A 2018 Science 362 1271 |
[12] | Wadley P, Howells B, Andrews C et al. 2016 Science 351 587 |
[13] | Das T and Balatsky A V 2013 Nat. Commun. 4 1972 |
[14] | Nakosai S, Tanaka Y and Nagaosa N 2012 Phys. Rev. Lett. 108 147003 |
[15] | Ji H R and Park C H 2017 NPG Asia Mater. 9 e382 |
[16] | Gautier R, Klingsporn J M, Van Duyne R P and Poeppelmeier K R 2016 Nat. Mater. 15 591 |
[17] | Suzuki R, Sakano M, Zhang Y J et al. 2014 Nat. Nanotechnol. 9 611 |
[18] | Cho S, Park J H, Hong J et al. 2018 Phys. Rev. Lett. 121 186401 |
[19] | Wang C, Lian B, Guo X, Mao J, Zhang Z, Zhang D, Gu B L, Xu Y and Duan W 2019 Phys. Rev. Lett. 123 126402 |
[20] | Falson J, Xu Y, Liao M et al. 2020 Science 367 1454 |
[21] | Liu Q, Zhang X, Jin H, Lam K, Im J, Freeman A J and Zunger A 2015 Phys. Rev. B 91 235204 |
[22] | Neupane M, Richardella A, Sánchez-Barriga J et al. 2014 Nat. Commun. 5 3841 |
[23] | Ashton M, Paul J, Sinnott S B and Hennig R G 2017 Phys. Rev. Lett. 118 106101 |
[24] | Mounet N, Gibertini M, Schwaller P et al. 2018 Nat. Nanotechnol. 13 246 |
[25] | Fu L and Berg E 2010 Phys. Rev. Lett. 105 097001 |
[26] | Qi X L, Hughes T L and Zhang S C 2010 Phys. Rev. B 81 134508 |
[27] | Dresselhaus M S, Dresselhaus G and Jorio A 2007 Group Theory: Application to the Physics of Condensed Matter (Berlin: Springer) |
[28] | Weng H, Dai X and Fang Z 2014 Phys. Rev. X 4 011002 |
[29] | Liu Q and Zunger A 2017 Phys. Rev. X 7 021019 |
[30] | Young S M, Zaheer S, Teo J C, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405 |
[31] | Yang B J and Nagaosa N 2014 Nat. Commun. 5 4898 |
[32] | Young S M and Kane C L 2015 Phys. Rev. Lett. 115 126803 |
[33] | Bzduek T, Wu Q S, Regg A, Sigrist M and Soluyanov A A 2016 Nature 538 75 |
[34] | Liang Q F, Zhou J, Yu R, Wang Z and Weng H 2016 Phys. Rev. B 93 085427 |
[35] | Tao L L and Tsymbal E Y 2018 Nat. Commun. 9 2763 |
[36] | Santos Cottin D, Casula M, Lantz G, Klein Y, Petaccia L, Le Fèvre P, Bertran F, Papalazarou E, Marsi M and Gauzzi A 2016 Nat. Commun. 7 11258 |
[37] | Yuan L, Liu Q, Zhang X, Luo J W, Li S S and Zunger A 2019 Nat. Commun. 10 906 |
[38] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[39] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[40] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 |
[41] | Liu Q, Zhang X, Waugh J A, Dessau D S and Zunger A 2016 Phys. Rev. B 94 125207 |
[42] | Li P and Appelbaum I 2018 Phys. Rev. B 97 125434 |
[43] | Ivchenko E L and Ganichev S D 2017 arXiv:1710.09223 [cond-mat.mes-hall] |
[44] | Ma H J H, Huang Z, Annadi A, Zeng S W, Wong L M, Wang S J, Venkatesan T and Ariando 2014 Appl. Phys. Lett. 105 011603 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|