CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Predicting the Potential Performance in P-Type SnS Crystals via Utilizing the Weighted Mobility and Quality Factor |
Wenke He , Bingchao Qin , and Li-Dong Zhao* |
School of Materials Science and Engineering, Beihang University, Beijing 100191, China |
|
Cite this article: |
Wenke He , Bingchao Qin , and Li-Dong Zhao 2020 Chin. Phys. Lett. 37 087104 |
|
|
Abstract The figure of merit $ZT$ is the direct embodiment of thermoelectric performance for a given material. However, as an indicator of performance improvement, the only $ZT$ value is not good enough to identify its outstanding inherent properties, which are highly sought in thermoelectric community. Here, we utilize one powerful parameter to reveal the outstanding properties of a given material. The weighted mobility is used to estimate the carrier transports of p-type SnS crystals, including the differences in doping level, carrier scattering and electronic band structure. We analyze the difference in carrier scattering mechanism for different crystal forms with the same doping level, then evaluate and confirm the temperature-dependent evolution of electronic band structures in SnS. Finally, we calculate the quality factor $B$ based on the weighted mobility, and establish the relationship between $ZT$ and $B$ to further predict the potential performance in p-type SnS crystals with low cost and earth abundance, which can be realized through taking advantage of the inherent material property, thus improving $B$ factor to achieve optimal thermoelectric level.
|
|
Received: 24 June 2020
Published: 12 July 2020
|
|
PACS: |
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
72.20.Pa
|
(Thermoelectric and thermomagnetic effects)
|
|
84.60.Rb
|
(Thermoelectric, electrogasdynamic and other direct energy conversion)
|
|
|
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0702100 and 2018YFB0703600), the National Natural Science Foundation of China (Grant Nos. 51632005 and 51772012), the Beijing Natural Science Foundation (Grant No. JQ18004), the Shenzhen Peacock Plan Team (Grant No. KQTD2016022619565991), 111 Project (Grant No. B17002), and the National Science Fund for Distinguished Young Scholars (Grant No. 51925101). |
|
|
[1] | He J and Tritt T M 2017 Science 357 eaak9997 |
[2] | Snyder G J and Toberer E S 2008 Nat. Mater. 7 105 |
[3] | Zhang X and Zhao L D 2015 J. Materiomics 1 92 |
[4] | Qin B C, Xiao Y, Zhou Y M and Zhao L D 2018 Rare Met. 37 343 |
[5] | Gao L, Liu Q L, Yang J W, Wu Y, Liu Z H, Qin S J, Ye X B, Jin S F, Li G D, Zhao H Z and Long Y W 2020 Chin. Phys. Lett. 37 066202 |
[6] | Zhou K, Zhang T, Liu B and Yao Y J 2020 Chin. Phys. Lett. 37 017102 |
[7] | Wei T R, Wu C F, Li F and Li J F 2018 J. Materiomics 4 304 |
[8] | Xiao Y and Zhao L D 2020 Science 367 1196 |
[9] | Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373 |
[10] | Zhou Y and Zhao L D 2017 Adv. Mater. 29 1702676 |
[11] | Shang P P, Dong J, Pei J, Sun F H, Pan Y, Tang H, Zhang B P, Zhao L D and Li J F 2019 Research 2019 1 |
[12] | Zhou L Y, Zheng Q, Bao L H and Liang W J 2020 Chin. Phys. Lett. 37 017301 |
[13] | Tan Q and Li J F 2014 J. Electron. Mater. 43 2435 |
[14] | Tan Q, Zhao L D, Li J F, Wu C F, Wei T R, Xing Z B and Kanatzidis M G 2014 J. Mater. Chem. A 2 17302 |
[15] | Chattopadhyay T, Pannetier J and Von Schnering H G 1986 J. Phys. Chem. Solids 47 879 |
[16] | Shafique A and Shin Y H 2017 Sci. Rep. 7 10 |
[17] | He W, Wang D, Dong J F, Qiu Y, Fu L, Feng Y, Hao Y J, Wang G T, Wang J F, Liu C, Li J F, He J Q and Zhao L D 2018 J. Mater. Chem. A 6 10048 |
[18] | Zhao L D, Chang C, Tan G and Kanatzidis M G 2016 Energy & Environ. Sci. 9 3044 |
[19] | Qu W W, Zhang X X, Yuan B F and Zhao L D 2018 Rare Met. 37 79 |
[20] | Chang C and Zhao L D 2018 Mater. Today Phys. 4 50 |
[21] | Feng B, Li G Q, Hu X M, Liu P H, Li R S, Zhang Y L, Li Y W, He Z and Fan X A 2020 Chin. Phys. Lett. 37 037201 |
[22] | Volykhov A A, Shtanov V I and Yashina L V 2008 Inorg. Mater. 44 345 |
[23] | Parker D and Singh D J 2010 J. Appl. Phys. 108 083712 |
[24] | Hao S, Dravid V P, Kanatzidis M G and Wolverton C 2016 APL Mater. 4 104505 |
[25] | Wu H, Lu X, Wang G, Peng K, Chi H, Zhang B, Chen Y, Li C, Yan Y, Guo L, Uher C, Zhou X and Han X 2018 Adv. Energy Mater. 8 1800087 |
[26] | Zhou B, Li S, Li W, Li J, Zhang X, Lin S, Chen Z and Pei Y 2017 ACS Appl. Mater. & Interfaces 9 34033 |
[27] | Tang H, Dong J F, Sun F H, Asfandiyar, Shang P and Li J F 2019 Sci. Chin. Mater. 62 7 |
[28] | Wang Z, Wang D, Qiu Y, He J and Zhao L D 2019 J. Alloys Compd. 789 485 |
[29] | Yang H Q, Wang X Y, Wu H, Zhang B, Xie D D, Chen Y J, Lu X, Han X D, Miao L and Zhou X Y 2019 J. Mater. Chem. C 7 3351 |
[30] | He W, Wang D, Wu H et al. 2019 Science 365 1418 |
[31] | Snyder G J, Snyder A H, Wood M, Gurunathan R, Snyder B H and Niu C 2020 Adv. Mater. 32 2001537 |
[32] | Imasato K, Fu C, Pan Y, Wood M, Kuo J J, Felser C and Snyder G J 2020 Adv. Mater. 32 1908218 |
[33] | Slade T J, Grovogui J A, Kuo J J, Anand S, Bailey T P, Wood M, Uher C, Snyder G J, Dravid V P and Kanatzidis M G 2020 Energy & Environ. Sci. 13 1509 |
[34] | Qin B, He W and Zhao L D 2020 J. Materiomics DOI:10.1016/j.jmat.2020.06.003 |
[35] | May A F, Toberer E S, Saramat A and Snyder G J 2009 Phys. Rev. B 80 125205 |
[36] | Xie H H, Wang H, Fu C, Liu Y, Snyder G J, Zhao X and Zhu T 2015 Sci. Rep. 4 6888 |
[37] | Mao J, Shuai J, Song S et al. 2017 Proc. Natl. Acad. Sci. USA 114 10548 |
[38] | May A F and Snyder G J 2017 Materials, Preparation, and Characterization in Thermoelectrics (CRC press) p. 11 |
[39] | Kang S D and Snyder G J 2017 arXiv:1710.06896 [cond-mat.mtrl-sci] |
[40] | Kang S D and Snyder G J 2017 Nat. Mater. 16 252 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|