Chin. Phys. Lett.  2020, Vol. 37 Issue (8): 085201    DOI: 10.1088/0256-307X/37/8/085201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Temperature Gradient, Toroidal and Ion FLR Effects on Drift-Tearing Modes
Hao Shi1,2,3, Wenlu Zhang2,4,3,1,5*, Chao Dong2,3, Jian Bao2,3, Zhihong Lin6, Jintao Cao2,3, and Ding Li2,4,3,5
1School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
2Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
4Songshan Lake Materials Laboratory, Dongguan 523808, China
5CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
6Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
Cite this article:   
Hao Shi, Wenlu Zhang, Chao Dong et al  2020 Chin. Phys. Lett. 37 085201
Download: PDF(1601KB)   PDF(mobile)(1600KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The influences of the temperature gradient and toroidal effects on drift-tearing modes have been studied using the Gyrokinetic Toroidal code. After the thermal force term is introduced into the parallel electron force balance equation, the equilibrium temperature gradient can cause a significant increase in the growth rate of the drift-tearing mode and a broadening of the mode structure. The simulation results show that the toroidal effects increase the growth rate of the drift-tearing mode, and the contours of the perturbation field “squeeze” toward the stronger field side in the poloidal section. Finally, the hybrid model for fluid electrons and kinetic ions has been studied briefly, and the dispersion relation of the drift-tearing mode under the influence of ion finite Larmor radius effects is obtained. Compared with the dispersion relation under the fluid model, a stabilizing effect of the ion finite Larmor radius is observed.
Received: 27 May 2020      Published: 28 July 2020
PACS:  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
  52.65.Kj (Magnetohydrodynamic and fluid equation)  
  52.65.Tt (Gyrofluid and gyrokinetic simulations)  
  52.55.Fa (Tokamaks, spherical tokamaks)  
Fund: Supported by the National MCF Energy R&D Program (Grant Nos.  2018YFE0304100, 2018YFE0311300, and 2017YFE0301300), the National Natural Science Foundation of China (Grant Nos.  11675256, 11675257, 11835016, and 11705275), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB16010300), the Key Research Program of Frontier Science of Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SYS016), and the External Cooperation Program of Chinese Academy of Sciences (Grant No. 112111KYSB20160039).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/8/085201       OR      https://cpl.iphy.ac.cn/Y2020/V37/I8/085201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hao Shi
Wenlu Zhang
Chao Dong
Jian Bao
Zhihong Lin
Jintao Cao
and Ding Li
[1] Furth H P, Killeen J and Rosenbluth M N 1963 Phys. Fluids 6 459
[2] Furth H P, Rutherford P H and Selberg H 1973 Phys. Fluids 16 1054
[3] Rutherford P H 1973 Phys. Fluids 16 1903
[4] Hazeltine R D, Dobrott D and Wang T S 1975 Phys. Fluids 18 1778
[5] Drake J F and Lee Y C 1977 Phys. Fluids 20 1341
[6] Biskamp D 1978 Nucl. Fusion 18 1059
[7] Monticello D A and White R B 1980 Phys. Fluids 23 366
[8]Ye M F, Zhang B Z, Jiang D Y and Li Y N 1998 Chin. Phys. Lett. 10 Suppl. p 191
[9] Yang W, Li D and Xu X Q 2018 Chin. Phys. Lett. 35 065201
[10] Xu T, Hu Q M, Hu X W and Yu Q Q 2011 Chin. Phys. Lett. 28 095202
[11] Ji X Q, Yang Q W, Liu Y, Zhou J, Feng B B and Yuan B S 2010 Chin. Phys. Lett. 27 065202
[12] Shi H, Zhang W, Feng H, Lin Z, Dong C, Bao J and Li D 2019 Phys. Plasmas 26 092512
[13] Hassam A B 1980 Phys. Fluids 23 2493
[14] Nishimura S, Yagi M, Itoh S I, Azumi M and Itoh K 2007 J. Phys. Soc. Jpn. 76 064501
[15] Yu Q, Günter S and Scott B D 2003 Phys. Plasmas 10 797
[16] Yu Q 2010 Nucl. Fusion 50 025014
[17]Li D and Huo Y P 1998 Chin. Phys. Lett. 10 Suppl. p 154
[18] Bussac M, Edery D, Pellat R and J L S 1978 Phys. Rev. Lett. 40 1500
[19] Connor J, Ham C, Hastie R and Zocco A 2019 J. Plasma Phys. 85 905850204
[20] Chen Y, Chowdhury J, Parker S E and Wan W 2015 Phys. Plasmas 22 042111
[21] Cai H and Fu G 2012 Phys. Plasmas 19 072506
[22] Hornsby W A, Migliano P, Buchholz R, Kroenert L, Weikl A, Peeters A G, Zarzoso D, Poli E and Casson F J 2015 Phys. Plasmas 22 022118
[23] Cai H, Wang S, Xu Y, Cao J and Li D 2011 Phys. Rev. Lett. 106 075002
[24] Holod I, Zhang W L, Xiao Y and Lin Z 2009 Phys. Plasmas 16 122307
[25] Deng W, Lin Z and Holod I 2012 Nucl. Fusion 52 023005
[26] Liu D, Zhang W, Mcclenaghan J, Wang J and Lin Z 2014 Phys. Plasmas 21 122520
[27] Feng H, Zhang W, Dong C, Cao J and Li D 2017 Phys. Plasmas 24 102125
[28] Scott B D, Drake J F and Hassam A B 1985 Phys. Rev. Lett. 54 1027
Related articles from Frontiers Journals
[1] P. W. Shi, Y. R. Yang, W. Chen, Z. B. Shi, Z. C. Yang, L. M. Yu, T. B. Wang, X. X. He, X. Q. Ji, W. L. Zhong, M. Xu, and X. R. Duan. Observation and Simulation of $n=1$ Reversed Shear Alfvén Eigenmode on the HL-2A Tokamak[J]. Chin. Phys. Lett., 2022, 39(10): 085201
[2] Tong Liu , Lai Wei , Feng Wang, and Zheng-Xiong Wang . Coriolis Force Effect on Suppression of Neo-Classical Tearing Mode Triggered Explosive Burst in Reversed Magnetic Shear Tokamak Plasmas[J]. Chin. Phys. Lett., 2021, 38(4): 085201
[3] Yun-Peng Yang, Jing Zhang, Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wun-Hua Ye, and Xian-Tu He. Interface Width Effect on the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry[J]. Chin. Phys. Lett., 2020, 37(7): 085201
[4] Yun-Peng Yang, Jing Zhang, Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wen-Hua Ye, Xian-Tu He. Simulation of the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry[J]. Chin. Phys. Lett., 2020, 37(5): 085201
[5] Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wen-Hua Ye. Phase Effects of Long-Wavelength Rayleigh–Taylor Instability on the Thin Shell[J]. Chin. Phys. Lett., 2020, 37(2): 085201
[6] Wen Yang, Ding Li, Xue-qiao Xu. Effect of Hyper-Resistivity on Nonlinear Tearing Modes[J]. Chin. Phys. Lett., 2018, 35(6): 085201
[7] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Weakly Nonlinear Rayleigh–Taylor Instability in Cylindrically Convergent Geometry[J]. Chin. Phys. Lett., 2018, 35(5): 085201
[8] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Linear Growth of Rayleigh–Taylor Instability of Two Finite-Thickness Fluid Layers[J]. Chin. Phys. Lett., 2017, 34(7): 085201
[9] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Weakly Nonlinear Rayleigh–Taylor Instability in Incompressible Fluids with Surface Tension[J]. Chin. Phys. Lett., 2017, 34(4): 085201
[10] Yi-Fan Yan, Zhong-Tian Wang, Zhi-Xiong He, Li-Ming Yu, Zhan-Hui Wang, Jia-Qi Dong, Hui-Dong Li, Hao Feng. Theoretical Analysis of the Frequency Jump in E-fishbone Experiments[J]. Chin. Phys. Lett., 2016, 33(01): 085201
[11] AZAM Hussain, GAO Bing-Xi, LIU Wan-Dong, XIE Jin-Lin, the EAST Team. Electron Cyclotron Emission Imaging Observations of m/n=1/1 and Higher Harmonic Modes during Sawtooth Oscillation in ICRF Heating Plasma on EAST[J]. Chin. Phys. Lett., 2015, 32(06): 085201
[12] XU Li-Qing, HU Li-Qun, CHEN Kai-Yun, LI Chang-Zheng, LI Er-Zhong, ZHAO Jin-Long, SHENG Xiu-Li, ZHANG Ji-Zong, MAO Song-Tao. Repetitive 'Snakes' and Their Damping Effect on Core Toroidal Rotation in EAST Plasmas with Multiple H–L–H Transitions[J]. Chin. Phys. Lett., 2014, 31(10): 085201
[13] SU Heng-Yi, HUANG Yong-Sheng, WANG Nai-Yan, TANG Xiu-Zhang, LU Wei. Quasi-Monoenergetic Electron Beam Generation from Nanothickness Solid Foils Irradiated by Circular-Polarization Laser Pulses[J]. Chin. Phys. Lett., 2014, 31(07): 085201
[14] WANG Li-Feng, WU Jun-Feng, YE Wen-Hua, FAN Zheng-Feng, HE Xian-Tu. Design of an Indirect-Drive Pulse Shape for ~1.6 MJ Inertial Confinement Fusion Ignition Capsules[J]. Chin. Phys. Lett., 2014, 31(04): 085201
[15] XU Li-Qing, HU Li-Qun, ZHANG Zi-Jun. Transient Appearance of Double Spontaneous-Snakes in EAST H Mode Plasma[J]. Chin. Phys. Lett., 2014, 31(03): 085201
Viewed
Full text


Abstract