PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
|
|
|
|
Temperature Gradient, Toroidal and Ion FLR Effects on Drift-Tearing Modes |
Hao Shi1,2,3, Wenlu Zhang2,4,3,1,5*, Chao Dong2,3, Jian Bao2,3, Zhihong Lin6, Jintao Cao2,3, and Ding Li2,4,3,5 |
1School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China 2Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 4Songshan Lake Materials Laboratory, Dongguan 523808, China 5CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China 6Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
|
|
Cite this article: |
Hao Shi, Wenlu Zhang, Chao Dong et al 2020 Chin. Phys. Lett. 37 085201 |
|
|
Abstract The influences of the temperature gradient and toroidal effects on drift-tearing modes have been studied using the Gyrokinetic Toroidal code. After the thermal force term is introduced into the parallel electron force balance equation, the equilibrium temperature gradient can cause a significant increase in the growth rate of the drift-tearing mode and a broadening of the mode structure. The simulation results show that the toroidal effects increase the growth rate of the drift-tearing mode, and the contours of the perturbation field “squeeze” toward the stronger field side in the poloidal section. Finally, the hybrid model for fluid electrons and kinetic ions has been studied briefly, and the dispersion relation of the drift-tearing mode under the influence of ion finite Larmor radius effects is obtained. Compared with the dispersion relation under the fluid model, a stabilizing effect of the ion finite Larmor radius is observed.
|
|
Received: 27 May 2020
Published: 28 July 2020
|
|
PACS: |
52.35.Py
|
(Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))
|
|
52.65.Kj
|
(Magnetohydrodynamic and fluid equation)
|
|
52.65.Tt
|
(Gyrofluid and gyrokinetic simulations)
|
|
52.55.Fa
|
(Tokamaks, spherical tokamaks)
|
|
|
Fund: Supported by the National MCF Energy R&D Program (Grant Nos. 2018YFE0304100, 2018YFE0311300, and 2017YFE0301300), the National Natural Science Foundation of China (Grant Nos. 11675256, 11675257, 11835016, and 11705275), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB16010300), the Key Research Program of Frontier Science of Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SYS016), and the External Cooperation Program of Chinese Academy of Sciences (Grant No. 112111KYSB20160039). |
|
|
[1] | Furth H P, Killeen J and Rosenbluth M N 1963 Phys. Fluids 6 459 |
[2] | Furth H P, Rutherford P H and Selberg H 1973 Phys. Fluids 16 1054 |
[3] | Rutherford P H 1973 Phys. Fluids 16 1903 |
[4] | Hazeltine R D, Dobrott D and Wang T S 1975 Phys. Fluids 18 1778 |
[5] | Drake J F and Lee Y C 1977 Phys. Fluids 20 1341 |
[6] | Biskamp D 1978 Nucl. Fusion 18 1059 |
[7] | Monticello D A and White R B 1980 Phys. Fluids 23 366 |
[8] | Ye M F, Zhang B Z, Jiang D Y and Li Y N 1998 Chin. Phys. Lett. 10 Suppl. p 191 |
[9] | Yang W, Li D and Xu X Q 2018 Chin. Phys. Lett. 35 065201 |
[10] | Xu T, Hu Q M, Hu X W and Yu Q Q 2011 Chin. Phys. Lett. 28 095202 |
[11] | Ji X Q, Yang Q W, Liu Y, Zhou J, Feng B B and Yuan B S 2010 Chin. Phys. Lett. 27 065202 |
[12] | Shi H, Zhang W, Feng H, Lin Z, Dong C, Bao J and Li D 2019 Phys. Plasmas 26 092512 |
[13] | Hassam A B 1980 Phys. Fluids 23 2493 |
[14] | Nishimura S, Yagi M, Itoh S I, Azumi M and Itoh K 2007 J. Phys. Soc. Jpn. 76 064501 |
[15] | Yu Q, Günter S and Scott B D 2003 Phys. Plasmas 10 797 |
[16] | Yu Q 2010 Nucl. Fusion 50 025014 |
[17] | Li D and Huo Y P 1998 Chin. Phys. Lett. 10 Suppl. p 154 |
[18] | Bussac M, Edery D, Pellat R and J L S 1978 Phys. Rev. Lett. 40 1500 |
[19] | Connor J, Ham C, Hastie R and Zocco A 2019 J. Plasma Phys. 85 905850204 |
[20] | Chen Y, Chowdhury J, Parker S E and Wan W 2015 Phys. Plasmas 22 042111 |
[21] | Cai H and Fu G 2012 Phys. Plasmas 19 072506 |
[22] | Hornsby W A, Migliano P, Buchholz R, Kroenert L, Weikl A, Peeters A G, Zarzoso D, Poli E and Casson F J 2015 Phys. Plasmas 22 022118 |
[23] | Cai H, Wang S, Xu Y, Cao J and Li D 2011 Phys. Rev. Lett. 106 075002 |
[24] | Holod I, Zhang W L, Xiao Y and Lin Z 2009 Phys. Plasmas 16 122307 |
[25] | Deng W, Lin Z and Holod I 2012 Nucl. Fusion 52 023005 |
[26] | Liu D, Zhang W, Mcclenaghan J, Wang J and Lin Z 2014 Phys. Plasmas 21 122520 |
[27] | Feng H, Zhang W, Dong C, Cao J and Li D 2017 Phys. Plasmas 24 102125 |
[28] | Scott B D, Drake J F and Hassam A B 1985 Phys. Rev. Lett. 54 1027 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|