Chin. Phys. Lett.  2020, Vol. 37 Issue (8): 086301    DOI: 10.1088/0256-307X/37/8/086301
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Coupling between Particle Shape and Long-Range Interaction in the High-Density Regime
Can-can Zhou1†, Hongchuan Shen1†, Hua Tong2,4, Ning Xu3, and Peng Tan1*
1State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
2School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
3CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Physics, University of Science and Technology of China, Hefei 230026, China
4Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
Cite this article:   
Can-can Zhou, Hongchuan Shen, Hua Tong et al  2020 Chin. Phys. Lett. 37 086301
Download: PDF(1414KB)   PDF(mobile)(1404KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We experimentally probe the coupling between particle shape and long-range interaction, using long-range interacting polygons. For two typical space-filling polygons, square and triangle, we find two types of coupling modes that predominantly control the structure formation. Specifically, the rotational ordering of squares brings a lattice deformation that produces a hexagonal-to-rhombic transition in the high density regime, whereas the alignment of triangles introduces a large geometric frustration that causes an order-to-disorder transition. Moreover, the two coupling modes lead to small and large “internal roughness” of the two systems, and thus predominantly control their structure relaxations. Our study thus provides a physical picture to the coupling between long-range interaction effect and short-range shape effect in the high-density regime unexplored before.
Received: 06 June 2020      Published: 28 July 2020
PACS:  63.50.Lm (Glasses and amorphous solids)  
  45.70.-n (Granular systems)  
  61.43.-j (Disordered solids)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11774059 and 11734014).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/8/086301       OR      https://cpl.iphy.ac.cn/Y2020/V37/I8/086301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Can-can Zhou
Hongchuan Shen
Hua Tong
Ning Xu
and Peng Tan
[1] Wasio N A, Quardokus R C, Forrest R P, Lent C S, Corcelli S A, Christie J A, Henderson K W and Kandel S A 2014 Nature 507 86
[2] Glotzer S C and Solomon M J 2007 Nat. Mater. 6 557
[3] Damasceno P F, Engel M and Glotzer S C 2012 Science 337 453
[4] Jones M R, Macfarlane R J, Lee B, Zhang J, Young K L, Senesi A J and Mirkin C A 2010 Nat. Mater. 9 913
[5] Jones M R, Seeman N C and Mirkin C A 2015 Science 347 1260901
[6] Li C, Zhang X and Cao Z 2005 Science 309 909
[7] Zhao K and Mason T G 2015 Proc. Natl. Acad. Sci. USA 112 12063
[8] Zhang H P, Be'er A, Florin E L and Swinney H L 2010 Proc. Natl. Acad. Sci. USA 107 13626
[9] Chen C, Liu S, Shi X Q, Chaté H and Wu Y 2017 Nature 542 210
[10] Zhao K and Mason T G 2009 Phys. Rev. Lett. 103 208302
[11] Zhao K, Bruinsma R and Mason T G 2011 Proc. Natl. Acad. Sci. USA 108 2684
[12] Nagaoka Y, Tan R, Li R, Zhu H, Eggert D, Wu Y A, Liu Y, Wang Z and Chen O 2018 Nature 561 378
[13] Haji-Akbari A, Engel M, Keys A S, Zheng X, Petschek R G, Palffy-Muhoray P and Glotzer S C 2009 Nature 462 773
[14] Nagaoka Y, Zhu H, Eggert D and Chen O 2018 Science 362 1396
[15] Han Y, Alsayed A, Nobili M, Zhang J, Lubensky T C and Yodh A G 2006 Science 314 626
[16] Zheng Z, Wang F, Han Y et al. 2011 Phys. Rev. Lett. 107 065702
[17] Yunker P J, Chen K, Zhang Z, Ellenbroek W G, Liu A J and Yodh A G 2011 Phys. Rev. E 83 011403
[18] Li Y W, Li Z Q, Hou Z L, Mason T G, Zhao K, Sun Z Y and Ciamarra M P 2019 Phys. Rev. Mater. 3 125603
[19] Shen H, Tong H, Tan P and Xu L 2019 Nat. Commun. 10 1
[20] Heggen M, Houben L and Feuerbacher M 2010 Nat. Mater. 9 332
[21] Anderson J A, Antonaglia J, Millan J A, Engel M and Glotzer S C 2017 Phys. Rev. X 7 021001
[22] Mao X, Chen Q and Granick S 2013 Nat. Mater. 12 217
[23] Chen Q, Bae S C and Granick S 2011 Nature 469 381
[24] Wojciechowski K W and Frenkel D 2004 Comput. Methods Sci. Technol. 10 235
[25] Zhao K, Bruinsma R and Mason T G 2012 Nat. Commun. 3 801
[26] Smallenburg F, Filion L, Marechal M and Dijkstra M 2012 Proc. Natl. Acad. Sci. USA 109 17886
[27] Yunker P, Zhang Z and Yodh A G 2010 Phys. Rev. Lett. 104 015701
[28] Zhang H and Han Y 2018 Phys. Rev. X 8 041023
[29] Cao Y, Li J, Kou B et al. 2018 Nat. Commun. 9 1
[30] Kou B, Cao Y, Li J, Xia C, Li Z, Dong H, Zhang A, Zhang J, Kob W and Wang Y 2018 Phys. Rev. Lett. 121 018002
[31] Zong Y, Chen K, Mason T G and Zhao K 2018 Phys. Rev. Lett. 121 228003
[32] Chen K, Ellenbroek W G, Zhang Z et al. 2010 Phys. Rev. Lett. 105 025501
[33] Tan P, Xu N, Schofield A B and Xu L 2012 Phys. Rev. Lett. 108 095501
[34] Manning M L and Liu A J 2011 Phys. Rev. Lett. 107 108302
[35] Widmer-Cooper A, Perry H, Harrowell P and Reichman D R 2008 Nat. Phys. 4 711
[36] Ou Z, Wang Z, Luo B, Luijten E and Chen Q 2002 Nat. Mater. 1 1
[37] Zu M, Tan P and Xu N 2017 Nat. Commun. 8 1
Related articles from Frontiers Journals
[1] Dou-Dou Zhang, Xiu-Ru Liu, Zhu He, Shi-Ming Hong. Pressure and Time Dependences of the Supercooled Liquid-to-Liquid Transition in Sulfur[J]. Chin. Phys. Lett., 2016, 33(02): 086301
Viewed
Full text


Abstract