Chin. Phys. Lett.  2020, Vol. 37 Issue (7): 077304    DOI: 10.1088/0256-307X/37/7/077304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Large Dynamical Axion Field in Topological Antiferromagnetic Insulator Mn$_2$Bi$_2$Te$_5$
Jinlong Zhang1†, Dinghui Wang2†, Minji Shi2†, Tongshuai Zhu2, Haijun Zhang2,3*, Jing Wang1,3,4*
1State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China
2National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
3Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
4Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
Cite this article:   
Jinlong Zhang, Dinghui Wang, Minji Shi et al  2020 Chin. Phys. Lett. 37 077304
Download: PDF(2348KB)   PDF(mobile)(2884KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The dynamical axion field is a new state of quantum matter where the magnetoelectric response couples strongly to its low-energy magnetic fluctuations. It is fundamentally different from an axion insulator with a static quantized magnetoelectric response. The dynamical axion field exhibits many exotic phenomena such as axionic polariton and axion instability. However, these effects have not been experimentally confirmed due to the lack of proper topological magnetic materials. Combining analytic models and first-principles calculations, here we predict a series of van der Waals layered Mn$_2$Bi$_2$Te$_5$-related topological antiferromagnetic materials that could host the long-sought dynamical axion field with a topological origin. We also show that a large dynamical axion field can be achieved in antiferromagnetic insulating states close to the topological phase transition. We further propose the optical and transport experiments to detect such a dynamical axion field. Our results could directly aid and facilitate the search for topological-origin large dynamical axion field in realistic materials.
Received: 11 June 2020      Published: 18 June 2020
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  14.80.Va (Axions and other Nambu-Goldstone bosons (Majorons, familons, etc.))  
Fund: Supported by the Fundamental Research Funds for the Central Universities (Grant No. 020414380149), the Natural Science Foundation of China (Grant Nos. 11674165, 11834006 and 11774065), the Fok Ying-Tong Education Foundation of China (Grant No. 161006), the National Key R&D Program of China (Grant Nos. 2016YFA0300703 and 2019YFA0308404), the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX04), the Natural Science Foundation of Shanghai (Grant No. 19ZR1471400).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/7/077304       OR      https://cpl.iphy.ac.cn/Y2020/V37/I7/077304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jinlong Zhang
Dinghui Wang
Minji Shi
Tongshuai Zhu
Haijun Zhang
Jing Wang
[1]Thouless D J 1998 Topological Quantum Numbers in Nonrealistic Physics (Singapore: World Scientific)
[2] Tokura Y, Yasuda K and Tsukazaki A 2019 Nat. Rev. Phys. 1 126
[3] Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B 78 195424
[4] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[5] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[6] Qi X L, Li R, Zang J and Zhang S C 2009 Science 323 1184
[7] Wang J and Zhang S C 2017 Nat. Mater. 16 1062
[8] Li R, Wang J, Qi X L and Zhang S C 2010 Nat. Phys. 6 284
[9] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61
[10] Maciejko J, Qi X L, Drew H D and Zhang S C 2010 Phys. Rev. Lett. 105 166803
[11] Tse W K and MacDonald A H 2010 Phys. Rev. Lett. 105 057401
[12] Nomura K and Nagaosa N 2011 Phys. Rev. Lett. 106 166802
[13] Wang J, Lian B, Qi X L and Zhang S C 2015 Phys. Rev. B 92 081107
[14] Morimoto T, Furusaki A and Nagaosa N 2015 Phys. Rev. B 92 085113
[15] Okada K N, Takahashi Y, Mogi M, Yoshimi R, Tsukazaki A, Takahashi K S, Ogawa N, Kawasaki M and Tokura Y 2016 Nat. Commun. 7 12245
[16] Wu L, Salehi M, Koirala N, Moon J, Oh S and Armitage N P 2016 Science 354 1124
[17] Dziom V, Shuvaev A, Pimenov A, Astakhov G V, Ames C, Bendias K, Böttcher J, Tkachov G, Hankiewicz E M, Brüne C, Buhmann H and Molenkamp L W 2017 Nat. Commun. 8 15197
[18] Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y, Shirakawa N, Takahashi K S, Kawasaki M and Tokura Y 2017 Nat. Mater. 16 516
[19] Mogi M, Kawamura M, Tsukazaki A, Yoshimi R, Takahashi K S, Kawasaki M and Tokura Y 2017 Sci. Adv. 3 eaao1669
[20] Xiao D, Jiang J, Shin J H, Wang W, Wang F, Zhao Y F, Liu C, Wu W, Chan M H W, Samarth N and Chang C Z 2018 Phys. Rev. Lett. 120 056801
[21] Zhang D, Shi M, Zhu T, Xing D, Zhang H and Wang J 2019 Phys. Rev. Lett. 122 206401
[22] Bermudez A, Mazza L, Rizzi M, Goldman N, Lewenstein M and Martin-Delgado M A 2010 Phys. Rev. Lett. 105 190404
[23] Lee I, Kim C K, Lee J, Billinge S J L, Zhong R, Schneeloch J A, Liu T, Valla T, Tranquada J M, Gu G and Davis J C S 2015 Proc. Natl. Acad. Sci. USA 112 1316
[24] Wieder B J, Bernevig B A and 2018 arXiv:1810.02373 [cond-mat.mes-hall]
[25] Gui X, Pletikosic I, Cao H, Tien H J, Xu X, Zhong R, Wang G, Chang T R, Jia S, Valla T, Xie W and Cava R J 2019 ACS Cent. Sci. 5 900
[26] Xu Y, Song Z, Wang Z, Weng H and Dai X 2019 Phys. Rev. Lett. 122 256402
[27] Wan X, Vishwanath A and Savrasov S Y 2012 Phys. Rev. Lett. 108 146601
[28] Turner A M, Zhang Y, Mong R S K and Vishwanath A 2012 Phys. Rev. B 85 165120
[29] Wang Z and Zhang S C 2013 Phys. Rev. B 87 161107
[30] You Y, Cho G Y and Hughes T L 2016 Phys. Rev. B 94 085102
[31] Gooth J, Bradlyn B, Honnali S, Schindler C, Kumar N, Noky J, Qi Y, Shekhar C, Sun Y, Wang Z, Bernevig B A and Felser C 2019 Nature 575 315
[32] Peccei R D and Quinn H R 1977 Phys. Rev. Lett. 38 1440
[33] Wilczek F 1987 Phys. Rev. Lett. 58 1799
[34] Karch A 2009 Phys. Rev. Lett. 103 171601
[35] Mulligan M and Burnell F J 2013 Phys. Rev. B 88 085104
[36] Zirnstein H G and Rosenow B 2017 Phys. Rev. B 96 201112
[37] Rosenberg G and Franz M 2010 Phys. Rev. B 82 035105
[38] Liu Z and Wang J 2020 Phys. Rev. B 101 205130
[39] Ooguri H and Oshikawa M 2012 Phys. Rev. Lett. 108 161803
[40] Imaeda T, Kawaguchi Y, Tanaka Y and Sato M 2019 J. Phys. Soc. Jpn. 88 024402
[41] Wang J, Li R, Zhang S C and Qi X L 2011 Phys. Rev. Lett. 106 126403
[42] Wang J, Lian B and Zhang S C 2016 Phys. Rev. B 93 045115
[43] Sekine A and Nomura K 2016 Phys. Rev. Lett. 116 096401
[44] Sekine A and Chiba T 2016 Phys. Rev. B 93 220403
[45] Taguchi K, Imaeda T, Hajiri T, Shiraishi T, Tanaka Y, Kitajima N and Naka T 2018 Phys. Rev. B 97 214409
[46] Hehl F W, Obukhov Y N, Rivera J P and Schmid H 2008 Phys. Rev. A 77 022106
[47] Wang J, Lei C, Macdonald A H, and Binek C 2019 arXiv:1901.08536 [cond-mat.mes-hall]
[48] Essin A M, Moore J E and Vanderbilt D 2009 Phys. Rev. Lett. 102 146805
[49] Li J, Li Y, Du S, Wang Z, Gu B L, Zhang S C, He K, Duan W and Xu Y 2019 Sci. Adv. 5 eaaw5685
[50] Otrokov M M, Klimovskikh I I, Bentmann H, Zeugner A, Aliev Z S, Gass S, Wolter A U B, Koroleva V, Estyunin D, Shikin A M, Blanco-Rey M, Hoffmann M, Vyazovskaya Y, Eremeev S V, Koroteev Y M, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Büchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Di Santo G , Vidal R C, Schatz S, Kißner K, Min C H, Moser S K, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A and Chulkov E V 2019 Nature 576 416
[51] Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L, Feng X, Zhang D, Li W, Song C, Wang L, Yu P, Chen X, Wang Y, Yao H, Duan W, Xu Y, Zhang S C, Ma X, Xue Q K and He K 2019 Chin. Phys. Lett. 36 076801
[52] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science 367 895
[53] Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J and Wang Y 2020 Nat. Mater. 19 522
[54]Lv Y 2020 to be published
[55] Hou Y and Wu R 2019 Nano Lett. 19 2472
[56] Wang H, Wang D, Yang Z, Shi M, Ruan J, Xing D, Wang J and Zhang H 2020 Phys. Rev. B 101 081109
[57] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[58] Grushin A G 2012 Phys. Rev. D 86 045001
[59] Son D T and Yamamoto N 2012 Phys. Rev. Lett. 109 181602
[60] Zyuzin A A and Burkov A A 2012 Phys. Rev. B 86 115133
[61] Goswami P and Tewari S 2013 Phys. Rev. B 88 245107
[62] Vazifeh M M and Franz M 2013 Phys. Rev. Lett. 111 027201
[63] Fukushima K, Kharzeev D E and Warringa H J 2008 Phys. Rev. D 78 074033
[64] Zhou J H, Jiang H, Niu Q and Shi J R 2013 Chin. Phys. Lett. 30 027101
[65] Ma J and Pesin D A 2015 Phys. Rev. B 92 235205
[66] Zhong S, Moore J E and Souza I 2016 Phys. Rev. Lett. 116 077201
[67] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005
[68] Marsh D J E, Fong K C, Lentz E W, Šmejkal L and Ali M N 2019 Phys. Rev. Lett. 123 121601
Related articles from Frontiers Journals
[1] Ruiling Gao, Chao Liu, Le Fang, Bixia Yao, Wei Wu, Qiling Xiao, Shunbo Hu, Yu Liu, Heng Gao, Shixun Cao, Guangsheng Song, Xiangjian Meng, Xiaoshuang Chen, and Wei Ren. Two-Dimensional Electron Gas in MoSi$_{2}$N$_{4}$/VSi$_{2}$N$_{4}$ Heterojunction by First Principles Calculation[J]. Chin. Phys. Lett., 2022, 39(12): 077304
[2] Yu Zhang, Qingyun Zhang, Youqi Ke, and Ke Xia. Giant Influence of Clustering and Anti-Clustering of Disordered Surface Roughness on Electronic Tunneling[J]. Chin. Phys. Lett., 2022, 39(8): 077304
[3] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 077304
[4] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 077304
[5] Danwen Yuan, Yuefang Hu, Yanmin Yang, and Wei Zhang. Topological Properties in Strained Monolayer Antimony Iodide[J]. Chin. Phys. Lett., 2021, 38(11): 077304
[6] Fan Gao and Yongqing Li. Influence of Device Geometry on Transport Properties of Topological Insulator Microflakes[J]. Chin. Phys. Lett., 2021, 38(11): 077304
[7] Kun Luo, Wei Chen, Li Sheng, and D. Y. Xing. Random-Gate-Voltage Induced Al'tshuler–Aronov–Spivak Effect in Topological Edge States[J]. Chin. Phys. Lett., 2021, 38(11): 077304
[8] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 077304
[9] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 077304
[10] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 077304
[11] Wei-Xiong Wu, Yang Feng, Yun-He Bai, Yu-Ying Jiang, Zong-Wei Gao, Yuan-Zhao Li, Jian-Li Luan, Heng-An Zhou, Wan-Jun Jiang, Xiao Feng, Jin-Song Zhang, Hao Zhang, Ke He, Xu-Cun Ma, Qi-Kun Xue, and Ya-Yu Wang. Gate Tunable Supercurrent in Josephson Junctions Based on Bi$_{2}$Te$_{3}$ Topological Insulator Thin Films[J]. Chin. Phys. Lett., 2021, 38(3): 077304
[12] Zi-Lin Ruan , Zhen-Liang Hao , Hui Zhang , Shi-Jie Sun , Yong Zhang , Wei Xiong , Xing-Yue Wang , Jian-Chen Lu, and Jin-Ming Cai . Topological-Defect-Induced Superstructures on Graphite Surface[J]. Chin. Phys. Lett., 2021, 38(2): 077304
[13] Chunyan Liao, Yahui Jin, Wei Zhang, Ziming Zhu, and Mingxing Chen. Fe$_{2}$Ga$_{2}$S$_{5}$ as a 2D Antiferromagnetic Semiconductor[J]. Chin. Phys. Lett., 2020, 37(10): 077304
[14] Ze-Rui Wang, Chen-Xiao Zhao, Guan-Yong Wang, Jin Qin, Bing Xia, Bo Yang, Dan-dan Guan, Shi-Yong Wang, Hao Zheng, Yao-Yi Li, Can-hua Liu, and Jin-Feng Jia. Controllable Modulation to Quantum Well States on $\beta$-Sn Islands[J]. Chin. Phys. Lett., 2020, 37(9): 077304
[15] Meihua Liu , Zhangwei Huang , Kuanchang Chang , Xinnan Lin , Lei Li , and Yufeng Jin. Performance Enhancement of AlGaN/GaN MIS-HEMTs Realized via Supercritical Nitridation Technology[J]. Chin. Phys. Lett., 2020, 37(9): 077304
Viewed
Full text


Abstract