Chin. Phys. Lett.  2020, Vol. 37 Issue (7): 077303    DOI: 10.1088/0256-307X/37/7/077303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Unusual Anomalous Hall Effect in a Co$_{2}$MnSi/MnGa/Pt Trilayer
Shan Li1,2, Jun Lu1,3*, Lian-Jun Wen1,2, Dong Pan1,2, Hai-Long Wang1,2, Da-Hai Wei1,2,3, and Jian-Hua Zhao1,2,3
1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2Center of Materials Science and Optoelectronics Engineering & CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
3Beijing Academy of Quantum Information Science, Beijing 100193, China
Cite this article:   
Shan Li, Jun Lu, Lian-Jun Wen et al  2020 Chin. Phys. Lett. 37 077303
Download: PDF(791KB)   PDF(mobile)(779KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An ultra-thin Co$_{2}$MnSi(0.5 nm)/MnGa(1.5 nm) bilayer capped with Pt (5 nm) has been successfully grown by molecular-beam epitaxy. It is a potential candidate of synthetic antiferromagnets due to antiferromagnetic coupling between Co$_{2}$MnSi and MnGa, which is a promising skyrmion-racetrack-memory medium without skyrmion Hall effect after capping with a Pt layer. Unusual humps in transverse Hall resistance loops are clearly observed in the temperature range from 260 to 400 K. This anomaly is generally attributed to topological Hall effect, but other than that, we prove that non-uniform rotation of magnetic moments in the bilayer with magnetic field sweeping is also a possible mechanism contributed to the unusual hump.
Received: 03 March 2020      Published: 21 June 2020
PACS:  73.50.Jt (Galvanomagnetic and other magnetotransport effects)  
  75.70.Ak (Magnetic properties of monolayers and thin films)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
Fund: Supported by the National Program on Key Basic Research Project under Grant No. 2018YFB0407601, the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant Nos. XDB44000000 and QYZDY-SSW-JSC015, and the National Natural Science Foundation of China under Grant Nos. 11874349 and 11774339.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/7/077303       OR      https://cpl.iphy.ac.cn/Y2020/V37/I7/077303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shan Li
Jun Lu
Lian-Jun Wen
Dong Pan
Hai-Long Wang
Da-Hai Wei
and Jian-Hua Zhao
[1] Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899
[2] Liu Y H and Li Y Q 2015 Chin. Phys. B 24 017506
[3] Bazeia D, Ramos J G G S and Rodrigues E I B 2017 J. Magn. Magn. Mater. 423 411
[4] Jiang W, Chen G, Liu K, Zang J, te Velthuis S G E and Hoffmann A 2017 Phys. Rep. 704 1
[5]Ding B and Wang W H 2018 Physics 47 15 (in Chinese)
[6] Fert A, Cros V and Sampaio J 2013 Nat. Nanotechnol. 8 152
[7] Finocchio G, Büttner F, Tomasello R, Carpentieri M and Kläui M 2016 J. Phys. D 49 423001
[8] Wiesendanger R 2016 Nat. Rev. Mater. 1 16044
[9] Zhang X, Zhou Y, Mee Song K, Park T E, Xia J, Ezawa M, Liu X, Zhao W, Zhao G and Woo S 2020 J. Phys.: Condens. Matter 32 143001
[10] Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E and Hoffmann A 2015 Science 349 283
[11] Zang J, Mostovoy M, Han J H and Nagaosa N 2011 Phys. Rev. Lett. 107 136804
[12] Tomasello R, Martinez E, Zivieri R, Torres L, Carpentieri M and Finocchio G 2015 Sci. Rep. 4 6784
[13] Jiang W, Zhang X, Yu G, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson John E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A and te Velthuis Suzanne G E 2017 Nat. Phys. 13 162
[14] Litzius K, Lemesh I, Krüger B, Bassirian P, Caretta L, Richter K, Büttner F, Sato K, Tretiakov O A, Förster J, Reeve R M, Weigand M, Bykova I, Stoll H, Schütz G, Beach G S D and Kläui M 2017 Nat. Phys. 13 170
[15] Zhang X, Zhou Y and Ezawa M 2016 Nat. Commun. 7 10293
[16] Dohi T, DuttaGupta S, Fukami S and Ohno H 2019 Nat. Commun. 10 5153
[17] Legrand W, Maccariello D, Ajejas F, Collin S, Vecchiola A, Bouzehouane K, Reyren N, Cros V and Fert A 2020 Nat. Mater. 19 34
[18] Taguchi Y, Oohara Y, Yoshizawa H, Nagaosa N and Tokura Y 2001 Science 291 2573
[19] Schulz T, Ritz R, Bauer A, Halder M, Wagner M, Franz C, Pfleiderer C, Everschor K, Garst M and Rosch A 2012 Nat. Phys. 8 301
[20] Yu G, Jenkins A, Ma X, Razavi S A, He C, Yin G, Shao Q, He Q L, Wu H, Li W, Jiang W, Han X, Li X, Bleszynski Jayich A C, Amiri P K and Wang K L 2018 Nano Lett. 18 980
[21] Tolley R, Montoya S A and Fullerton E E 2018 Phys. Rev. Mater. 2 044404
[22] Hou Z, Zhang Q, Xu G, Gong C, Ding B, Wang Y, Li H, Liu E, Xu F, Zhang H, Yao Y, Wu G, Zhang X X and Wang W 2018 Nano Lett. 18 1274
[23] Raju M, Yagil A, Soumyanarayanan A, Tan A K C, Almoalem A, Ma F, Auslaender O M and Panagopoulos C 2019 Nat. Commun. 10 696
[24] Lee M, Kang W, Onose Y, Tokura Y and Ong N P 2009 Phys. Rev. Lett. 102 186601
[25] Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G and Boni P 2009 Phys. Rev. Lett. 102 186602
[26] Kanazawa N, Onose Y, Arima T, Okuyama D, Ohoyama K, Wakimoto S, Kakurai K, Ishiwata S and Tokura Y 2011 Phys. Rev. Lett. 106 156603
[27] Huang S X and Chien C L 2012 Phys. Rev. Lett. 108 267201
[28] Li Y, Kanazawa N, Yu X Z, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X F, Kagawa F and Tokura Y 2013 Phys. Rev. Lett. 110 117202
[29] Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241
[30] Moriya T 1960 Phys. Rev. 120 91
[31] Soumyanarayanan A, Raju M, Gonzalez Oyarce A L, Tan A K C, Im M Y, Petrovic A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F and Panagopoulos C 2017 Nat. Mater. 16 898
[32] Meng K Y, Ahmed A S, Baćani M, Mandru A O, Zhao X, Bagués N, Esser B D, Flores J, McComb D W, Hug H J and Yang F 2019 Nano Lett. 19 3169
[33] Meng K K, Zhu L J, Jin Z H, Liu E K, Zhao X P, Malik I A, Fu Z G, Wu Y, Miao J, Xu X G, Zhang J X, Zhao J H and Jiang Y 2019 Phys. Rev. B 100 184410
[34] Ranjbar R, Suzuki K, Sugihara A, Miyazaki T, Ando Y and Mizukami S 2015 Mater. (Basel) 8 6531
[35] Lu J, Mao S W, Zhao X P, Wang X L, Liu J, Xia J B, Xiong P and Zhao J H 2017 Sci. Rep. 7 16990
[36] Mao S W, Lu J, Zhao X P, Wang X L, Wei D H, Liu J, Xia J B and Zhao J H 2017 Sci. Rep. 7 43064
[37] Matsuno J, Ogawa N, Yasuda K, Kagawa F, Koshibae W, Nagaosa N, Tokura Y and Kawasaki M 2016 Sci. Adv. 2 e1600304
[38] Meng K K, Zhao X P, Liu P F, Liu Q, Wu Y, Li Z P, Chen J K, Miao J, Xu X G, Zhao J H and Jiang Y 2018 Phys. Rev. B 97 060407
[39] Kan D, Moriyama T, Kobayashi K and Shimakawa Y 2018 Phys. Rev. B 98 180408(R)
[40] Gerber A 2018 Phys. Rev. B 98 214440
Related articles from Frontiers Journals
[1] Yu Bai, Zhe Wang, Na Lei, Wisal Muhammad, Lifeng Xiang, Qiang Li, Huilin Lai, Yinyan Zhu, Wenbing Wang, Hangwen Guo, Lifeng Yin, Ruqian Wu, and Jian Shen. Enhanced Anomalous Hall Effect of Pt on an Antiferromagnetic Insulator with Fully Compensated Surface[J]. Chin. Phys. Lett., 2022, 39(10): 077303
[2] Weizheng Cao, Yunlong Su, Qi Wang, Cuiying Pei, Lingling Gao, Yi Zhao, Changhua Li, Na Yu, Jinghui Wang, Zhongkai Liu, Yulin Chen, Gang Li, Jun Li, and Yanpeng Qi. Quantum Oscillations in Noncentrosymmetric Weyl Semimetal SmAlSi[J]. Chin. Phys. Lett., 2022, 39(4): 077303
[3] Yequan Chen, Ruxin Liu, Yongda Chen, Xiao Yuan, Jiai Ning, Chunchen Zhang, Liming Chen, Peng Wang, Liang He, Rong Zhang, Yongbing Xu, and Xuefeng Wang. Large-Area Freestanding Weyl Semimetal WTe$_{2}$ Membranes[J]. Chin. Phys. Lett., 2021, 38(1): 077303
[4] Guangqiang Wang, Guoqing Chang, Huibin Zhou, Wenlong Ma, Hsin Lin, M. Zahid Hasan, Su-Yang Xu, and Shuang Jia. Field-Induced Metal–Insulator Transition in $\beta$-EuP$_3$[J]. Chin. Phys. Lett., 2020, 37(10): 077303
[5] Yequan Chen, Yongda Chen, Jiai Ning, Liming Chen, Wenzhuo Zhuang, Liang He, Rong Zhang, Yongbing Xu, Xuefeng Wang. Observation of Shubnikov-de Haas Oscillations in Large-Scale Weyl Semimetal WTe$_{2}$ Films[J]. Chin. Phys. Lett., 2020, 37(1): 077303
[6] ZHAO Jing, WANG Yin-Jun, HAN Xiu-Feng. Dependence of Interlayer AF Coupling on Ferromagnetic Layer Thickness in [Pt/Co]5/Ru/[Co/Pt]5 Multilayers[J]. Chin. Phys. Lett., 2009, 26(3): 077303
[7] WANG Zhi-Ming, XING Ding-Yu, ZHANG Shi-Yuan, XU Qing-Yu, Margriet VanBael, DU You-Wei. Magnetic-Field-Induced Semimetal-Insulator-like Transition in Highly Oriented Pyrolitic Graphite[J]. Chin. Phys. Lett., 2007, 24(1): 077303
[8] XIONG Jian-Wen, HU Liang-Bin, ZHANG Zhen-Xi. Suppression of Direct Spin Hall Currents in Two-Dimensional Electronic Systems with both Rashba and Dresselhaus Spin-Orbit Couplings[J]. Chin. Phys. Lett., 2006, 23(5): 077303
[9] ZHOU Yong, YANG Chun-Sheng, YU Jin-Qiang, ZHAO Xiao-Lin, MAO Hai-Ping. Giant Magneto-Impedance Effect in Sandwiched FeSiB/Cu/FeSiB Films[J]. Chin. Phys. Lett., 2000, 17(11): 077303
[10] LIANG Bing-qing, WANG Yin-jun. Longitudinal Magnetoresistance Effect at Low Temperature in Silver Telluride Thin Films[J]. Chin. Phys. Lett., 1999, 16(10): 077303
[11] WANG Zhi-hai, LIAN Gui-jun, GAO Ju, ZHOU Ya-qin, KANG Jin-feng, LI Mei-ya, XIONG Guang-cheng. Large Low-Field Magnetoresistance Observed in Polycrystalline La0.7Ca0.3MnO3 Films[J]. Chin. Phys. Lett., 1999, 16(1): 077303
[12] ZHANG Wu-shou, LI Bo-zang. Magnetoresistance and Interlayer Exchange Coupling in Ferromagnetic/Nonmagnetic/Insulator (Semiconductor) /Ferromagnetic Tunnel Junctions[J]. Chin. Phys. Lett., 1998, 15(4): 077303
[13] DU Qinghong, MAO Jianmin, WANG Taihong, CHENG Wenqin, ZHOU Junming, HUANG Qi . Magnetic Depopulation of Subbands in Very Narrow Quantum Channels[J]. Chin. Phys. Lett., 1991, 8(9): 077303
[14] HE Zhenhui, SHA Jian, SU Zhenpeng, CHENG Xiang ai, WANG Shunxi, FANG Minghu, ZHANG Qirui, ZHOU Xianyi, YAO Weiguo, QI Zhenzhong, YI Huairen, LI Hongcheng. Studies of the Anomaly of Hall Coefficient in High Tc Superconducting Thin Films[J]. Chin. Phys. Lett., 1991, 8(6): 077303
Viewed
Full text


Abstract