Chin. Phys. Lett.  2020, Vol. 37 Issue (7): 077302    DOI: 10.1088/0256-307X/37/7/077302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Band Alignment at the Al$_{2}$O$_{3}/\beta$-Ga$_{2}$O$_{3}$ Interface with CHF$_{3}$ Treatment
Hao Liu , Wen-Jun Liu*, Yi-Fan Xiao , Chao-Chao Liu , Xiao-Han Wu , and Shi-Jin Ding 
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
Cite this article:   
Hao Liu , Wen-Jun Liu, Yi-Fan Xiao  et al  2020 Chin. Phys. Lett. 37 077302
Download: PDF(648KB)   PDF(mobile)(640KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The energy band alignment at the atomic layer deposited Al$_{2}$O$_{3}/\beta$-Ga$_{2}$O$_{3}$ interface with CHF$_{3}$ treatment was characterized by x-ray photoelectron spectroscopy and secondary ion mass spectrometry (SIMS). With additional CHF$_{3}$ plasma treatment, the conduction band offset increases from 1.95${\pm}$0.1 eV to 2.32${\pm}$0.1 eV; and the valence band offset decreases from 0.21${\pm}$0.1 eV to $-$0.16${\pm}$0.1 eV. As a result, the energy band alignment changes from type I to type II. This energy band alignment transition could be attributed to the downshift of the core-level of Ga $3d$, resulting from the Ga–F bond formation in the F-rich interfacial layer, which is confirmed by the SIMS results.
Received: 15 April 2020      Published: 21 June 2020
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  71.15.-m (Methods of electronic structure calculations)  
Fund: Supported by the Guangdong Province Key Technologies Research and Development Program (Grant No. 2019B010128001), the National Natural Science Foundation of China (Grant No. 61774041), and the Shanghai Science and Technology Innovation Program (Grant No. 19520711500).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/7/077302       OR      https://cpl.iphy.ac.cn/Y2020/V37/I7/077302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hao Liu 
Wen-Jun Liu
Yi-Fan Xiao 
Chao-Chao Liu 
Xiao-Han Wu 
and Shi-Jin Ding 
[1] Zhou H, Alghamdi S, Si M et al. 2016 IEEE Electron Device Lett. 37 1411
[2] Higashiwaki M, Sasaki K, Kamimura T et al. 2013 Appl. Phys. Lett. 103 123511
[3]Allen S T, Pribble W L, Sadler R A et al. 1999 1999 IEEE MTT-S International Microwave Symposium Digest (13–19 June 1999 Anaheim, CA, USA) vol 1–4 pp 321–324
[4] Lin M E, Ma Z, Huang F Y et al. 1994 Appl. Phys. Lett. 64 1003
[5] Green A J, Chabak K D, Heller E R et al. 2016 IEEE Electron Device Lett. 37 902
[6] Hwang W S, Verma A, Peelaers H et al. 2014 Appl. Phys. Lett. 104 203111
[7] Wong M H, Sasaki K, Kuramata A et al. 2016 IEEE Electron Device Lett. 37 212
[8] Fleischer M and Meixner H 1993 J. Appl. Phys. 74 300
[9] Lorenz M R, Woods J F and Gambino R J 1967 J. Phys. Chem. Solids 28 403
[10] Carey P H, Ren F, Hays D C et al. 2017 Vacuum 142 52
[11] Kamimura T, Sasaki K, Hoi Wong M et al. 2014 Appl. Phys. Lett. 104 192104
[12] Higashiwaki M, Sasaki K, Kuramata A et al. 2014 Phys. Status Solidi 211 21
[13] Konishi K, Kamimura T, Wong M H et al. 2016 Phys. Status Solidi 253 623
[14] Higashiwaki M, Sasaki K, Murakami H et al. 2016 Semicond. Sci. Technol. 31 034001
[15] Tadjer M J, Mahadik N A, Wheeler V D et al. 2016 ECS J. Solid State Sci. Technol. 5 P468
[16] Zhang H, Jia R, Lei Y et al. 2018 J. Phys. D 51 75104
[17] Kraut E A, Grant R W, Waldrop J R et al. 1980 Phys. Rev. Lett. 44 1620
[18] Sun S, Liu W, Wang Y et al. 2018 Appl. Phys. Lett. 113 031603
[19] Hattori M, Oshima T, Wakabayashi R et al. 2016 Jpn. J. Appl. Phys. 55 1202B6
[20] Liu X, He J, Liu Q et al. 2015 Appl. Phys. Lett. 107 101601
[21] Seaward K L, Moll N J and Stickle W F 1990 J. Electron. Mater. 19 385
[22]Vakulka A, Kova J and Skapin T 2013 Acta Chimica Slovenica 60 521
Related articles from Frontiers Journals
[1] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$[J]. Chin. Phys. Lett., 2023, 40(3): 077302
[2] Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan, and Qing Wan. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics[J]. Chin. Phys. Lett., 2022, 39(11): 077302
[3] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 077302
[4] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 077302
[5] Danwen Yuan, Yuefang Hu, Yanmin Yang, and Wei Zhang. Topological Properties in Strained Monolayer Antimony Iodide[J]. Chin. Phys. Lett., 2021, 38(11): 077302
[6] Guohui Zhan, Minji Shi, Zhilong Yang, and Haijun Zhang. A Programmable k$\cdot$p Hamiltonian Method and Application to Magnetic Topological Insulator MnBi$_2$Te$_4$[J]. Chin. Phys. Lett., 2021, 38(7): 077302
[7] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 077302
[8] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 077302
[9] Rubah Kausar, Chao Zheng, and Xin Wan. Level Statistics Crossover of Chiral Surface States in a Three-Dimensional Quantum Hall System[J]. Chin. Phys. Lett., 2021, 38(5): 077302
[10] Lei Sun, Xiaoming Zhang, Han Gao, Jian Liu, Feng Liu, and Mingwen Zhao. Inversion/Mirror Symmetry-Protected Dirac Cones in Distorted Ruby Lattices[J]. Chin. Phys. Lett., 2020, 37(12): 077302
[11] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 077302
[12] Xiao-Ran Wang , Cui-Xian Guo , Qian Du , and Su-Peng Kou. State-Dependent Topological Invariants and Anomalous Bulk-Boundary Correspondence in Non-Hermitian Topological Systems with Generalized Inversion Symmetry[J]. Chin. Phys. Lett., 2020, 37(11): 077302
[13] Yong-Hua Cao, Jin-Tao Bai, and Hong-Jian Feng. Perovskite Termination-Dependent Charge Transport Behaviors of the CsPbI$_{3}$/Black Phosphorus van der Waals Heterostructure[J]. Chin. Phys. Lett., 2020, 37(10): 077302
[14] Pengdong Wang, Yihao Wang, Bo Zhang, Yuliang Li, Sheng Wang, Yunbo Wu, Hongen Zhu, Yi Liu, Guobin Zhang, Dayong Liu, Yimin Xiong, and Zhe Sun. Experimental Observation of Electronic Structures of Kagome Metal YCr$_{6}$Ge$_{6}$[J]. Chin. Phys. Lett., 2020, 37(8): 077302
[15] Zhihai Cui, Yuting Qian, Wei Zhang, Hongming Weng, and Zhong Fang. Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide[J]. Chin. Phys. Lett., 2020, 37(8): 077302
Viewed
Full text


Abstract