CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Band Alignment at the Al$_{2}$O$_{3}/\beta$-Ga$_{2}$O$_{3}$ Interface with CHF$_{3}$ Treatment |
Hao Liu , Wen-Jun Liu*, Yi-Fan Xiao , Chao-Chao Liu , Xiao-Han Wu , and Shi-Jin Ding |
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China |
|
Cite this article: |
Hao Liu , Wen-Jun Liu, Yi-Fan Xiao et al 2020 Chin. Phys. Lett. 37 077302 |
|
|
Abstract The energy band alignment at the atomic layer deposited Al$_{2}$O$_{3}/\beta$-Ga$_{2}$O$_{3}$ interface with CHF$_{3}$ treatment was characterized by x-ray photoelectron spectroscopy and secondary ion mass spectrometry (SIMS). With additional CHF$_{3}$ plasma treatment, the conduction band offset increases from 1.95${\pm}$0.1 eV to 2.32${\pm}$0.1 eV; and the valence band offset decreases from 0.21${\pm}$0.1 eV to $-$0.16${\pm}$0.1 eV. As a result, the energy band alignment changes from type I to type II. This energy band alignment transition could be attributed to the downshift of the core-level of Ga $3d$, resulting from the Ga–F bond formation in the F-rich interfacial layer, which is confirmed by the SIMS results.
|
|
Received: 15 April 2020
Published: 21 June 2020
|
|
PACS: |
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
71.15.-m
|
(Methods of electronic structure calculations)
|
|
|
Fund: Supported by the Guangdong Province Key Technologies Research and Development Program (Grant No. 2019B010128001), the National Natural Science Foundation of China (Grant No. 61774041), and the Shanghai Science and Technology Innovation Program (Grant No. 19520711500). |
|
|
[1] | Zhou H, Alghamdi S, Si M et al. 2016 IEEE Electron Device Lett. 37 1411 |
[2] | Higashiwaki M, Sasaki K, Kamimura T et al. 2013 Appl. Phys. Lett. 103 123511 |
[3] | Allen S T, Pribble W L, Sadler R A et al. 1999 1999 IEEE MTT-S International Microwave Symposium Digest (13–19 June 1999 Anaheim, CA, USA) vol 1–4 pp 321–324 |
[4] | Lin M E, Ma Z, Huang F Y et al. 1994 Appl. Phys. Lett. 64 1003 |
[5] | Green A J, Chabak K D, Heller E R et al. 2016 IEEE Electron Device Lett. 37 902 |
[6] | Hwang W S, Verma A, Peelaers H et al. 2014 Appl. Phys. Lett. 104 203111 |
[7] | Wong M H, Sasaki K, Kuramata A et al. 2016 IEEE Electron Device Lett. 37 212 |
[8] | Fleischer M and Meixner H 1993 J. Appl. Phys. 74 300 |
[9] | Lorenz M R, Woods J F and Gambino R J 1967 J. Phys. Chem. Solids 28 403 |
[10] | Carey P H, Ren F, Hays D C et al. 2017 Vacuum 142 52 |
[11] | Kamimura T, Sasaki K, Hoi Wong M et al. 2014 Appl. Phys. Lett. 104 192104 |
[12] | Higashiwaki M, Sasaki K, Kuramata A et al. 2014 Phys. Status Solidi 211 21 |
[13] | Konishi K, Kamimura T, Wong M H et al. 2016 Phys. Status Solidi 253 623 |
[14] | Higashiwaki M, Sasaki K, Murakami H et al. 2016 Semicond. Sci. Technol. 31 034001 |
[15] | Tadjer M J, Mahadik N A, Wheeler V D et al. 2016 ECS J. Solid State Sci. Technol. 5 P468 |
[16] | Zhang H, Jia R, Lei Y et al. 2018 J. Phys. D 51 75104 |
[17] | Kraut E A, Grant R W, Waldrop J R et al. 1980 Phys. Rev. Lett. 44 1620 |
[18] | Sun S, Liu W, Wang Y et al. 2018 Appl. Phys. Lett. 113 031603 |
[19] | Hattori M, Oshima T, Wakabayashi R et al. 2016 Jpn. J. Appl. Phys. 55 1202B6 |
[20] | Liu X, He J, Liu Q et al. 2015 Appl. Phys. Lett. 107 101601 |
[21] | Seaward K L, Moll N J and Stickle W F 1990 J. Electron. Mater. 19 385 |
[22] | Vakulka A, Kova J and Skapin T 2013 Acta Chimica Slovenica 60 521 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|