Chin. Phys. Lett.  2020, Vol. 37 Issue (7): 077301    DOI: 10.1088/0256-307X/37/7/077301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO$_{3}$/SrTiO$_{3}$ Heterostructures
Ran Tao1,2, Lin Li1,2*, Li-Jun Zhu1,2, Yue-Dong Yan1,2, Lin-Hai Guo1,2, Xiao-Dong Fan1,2, and Chang-Gan Zeng1,2*
1International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
2CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei 230026, China
Cite this article:   
Ran Tao, Lin Li, Li-Jun Zhu et al  2020 Chin. Phys. Lett. 37 077301
Download: PDF(1807KB)   PDF(mobile)(2781KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Hybrid structures of two distinct materials provide an excellent opportunity to optimize functionalities. We report the realization of wide quantum Hall plateaus in graphene field-effect devices on the LaAlO$_{3}$/SrTiO$_{3}$ heterostructures. Well-defined quantized Hall resistance plateaus at filling factors $v=\pm2$ can be obtained over wide ranges of the magnetic field and gate voltage, e.g., extending from 2 T to a maximum available magnetic field of 9 T. By using a simple band diagram model, it is revealed that these wide plateaus arise from the ultra-large capacitance of the ultra-thin LAO layer acting as the dielectric layer. This is distinctly different from the case of epitaxial graphene on SiC substrates, where the realization of giant Hall plateaus relies on the charge transfer between the graphene layer and interface states in SiC. Our results offer an alternative route towards optimizing the quantum Hall performance of graphene, which may find its applications in the further development of quantum resistance metrology.
Received: 17 April 2020      Published: 21 June 2020
PACS:  73.43.-f (Quantum Hall effects)  
  72.80.Vp (Electronic transport in graphene)  
  71.70.Di (Landau levels)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11974324, 11804326 and U1832151), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDC07010000), the National Key Research and Development Program of China (Grant No. 2017YFA0403600), Anhui Initiative in Quantum Information Technologies (Grant No. AHY170000), and Hefei Science Center CAS (Grant No. 2018HSC-UE014).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/7/077301       OR      https://cpl.iphy.ac.cn/Y2020/V37/I7/077301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ran Tao
Lin Li
Li-Jun Zhu
Yue-Dong Yan
Lin-Hai Guo
Xiao-Dong Fan
and Chang-Gan Zeng
[1] Novoselov K S and Geim A K 2007 Nat. Mater. 6 183
[2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[4] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[5] Jiang Z, Zhang Y, Tan Y W, Stormer H L and Kim P 2007 Solid State Commun. 143 14
[6] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P and Geim A K 2007 Science 315 1379
[7] Janssen T J B M, Tzalenchuk A, Lara-Avila S, Kubatkin S and Fal'Ko V I 2013 Rep. Prog. Phys. 76 104501
[8] Tzalenchuk A, Lara-Avila S, Kalaboukhov A, Paolillo S, Syväjärvi M, Yakimova R, Kazakova O, Janssen T J B M, Fal'Ko V I and Kubatkin S 2010 Nat. Nanotechnol. 5 186
[9] Lafont F, Ribeiro-Palau R, Kazazis D, Michon A, Couturaud O, Consejo C, Chassagne T, Zielinski M, Portail M, Jouault B, Schopfer F and Poirier W 2015 Nat. Commun. 6 6806
[10] Ribeiro-Palau R, Lafont F, Brun-Picard J, Kazazis D, Michon A, Cheynis F, Couturaud O, Consejo C, Jouault B, Poirier W and Schopfer F 2015 Nat. Nanotechnol. 10 965
[11] Kruskopf M and Elmquist R E 2018 Metrologia 55 R27
[12] Janssen T J B M, Tzalenchuk A, Yakimova R, Kubatkin S, Lara-Avila S, Kopylov S and Fal'Ko V I 2011 Phys. Rev. B 83 233402
[13] Takase K, Tanabe S, Sasaki S, Hibino H and Muraki K 2012 Phys. Rev. B 86 165435
[14] Kopylov S, Tzalenchuk A, Kubatkin S and Fal'ko V I 2010 Appl. Phys. Lett. 97 112109
[15] Ohtomo A and Hwang H Y 2004 Nature 427 423
[16] Thiel S, Hammerl G, Schmehl A, Schneider C W and Mannhart J 2006 Science 313 1942
[17] Aliaj I, Torre I, Miseikis V, di Gennaro E, Sambri A, Gamucci A, Coletti C, Beltram F, Granozio F M, Polini M, Pellegrini V and Roddaro S 2016 APL Mater. 4 066101
[18] Jnawali G, Huang M, Hsu J F, Lee H, Lee J W, Irvin P, Eom C B, D'Urso B and Levy J 2017 Adv. Mater. 29 1603488
[19] Tao R, Li L, Zhu L, Yan Y, Guo L, Fan X and Zeng C 2020 Appl. Phys. Express 13 035001
[20] Kim S, Jo I, Dillen D C, Ferrer D A, Fallahazad B, Yao Z, Banerjee S K and Tutuc E 2012 Phys. Rev. Lett. 108 116404
[21] Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J and Shepard K L 2011 Nat. Phys. 7 693
[22] Liang H, Cheng L, Wei L, Luo Z, Yu G, Zeng C and Zhang Z 2015 Phys. Rev. B 92 075309
[23] Cheng L, Wei L, Liang H, Yan Y, Cheng G, Lv M, Lin T, Kang T, Yu G, Chu J, Zhang Z and Zeng C 2017 Nano Lett. 17 6534
[24] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L and Dean C R 2013 Science 342 614
[25] Alexander-Webber J A, Huang J, Maude D K, Janssen T J B M, Tzalenchuk A, Antonov V, Yager T, Lara-Avila S, Kubatkin S, Yakimova R and Nicholas R J 2016 Sci. Rep. 6 30296
[26] Yang M, Couturaud O, Desrat W, Consejo C, Kazazis D, Yakimova R, Syväjärvi M, Goiran M, Béard J, Frings P, Pierre M, Cresti A, Escoffier W and Jouault B 2016 Phys. Rev. Lett. 117 237702
[27] Kudrynskyi Z R, Bhuiyan M A, Makarovsky O, Greener J D G, Vdovin E E, Kovalyuk Z D, Cao Y, Mishchenko A, Novoselov K S, Beton P H, Eaves L and Patanè A 2017 Phys. Rev. Lett. 119 157701
[28] Santander-Syro A F, Copie O, Kondo T, Fortuna F, Pailhès S, Weht R, Qiu X G, Bertran F, Nicolaou A, Taleb-Ibrahimi A, Fèvre P L, Herranz G, Bibes M, Reyren N, Apertet Y, Lecoeur P, Barthélémy A and Rozenberg M J 2011 Nature 469 189
[29] Yan Y, Guo L, Li L, Wei L, Chen W, Zeng C and Hou J 2020 Phys. Rev. B 101 035119
[30] Ponomarenko L A, Yang R, Gorbachev R V, Blake P, Mayorov A S, Novoselov K S, Katsnelson M I and Geim A K 2010 Phys. Rev. Lett. 105 136801
[31] Park B E and Ishiwara H 2003 Appl. Phys. Lett. 82 1197
[32] Takase K, Hibino H and Muraki K 2015 Phys. Rev. B 92 125407
[33] Aoki H and Ando T 1981 Solid State Commun. 38 1079
[34] Huckestein B 1995 Rev. Mod. Phys. 67 357
[35] Xiao M, Qiu C, Zhang Z and Peng L M 2017 ACS Appl. Mater. & Interfaces 9 34050
[36] Li W, Zhou J, Cai S, Yu Z, Zhang J, Fang N, Li T, Wu Y, Chen T, Xie X, Ma H, Yan K, Dai N, Wu X, Zhao H, Wang Z, He D, Pan L, Shi Y, Wang P, Chen W, Nagashio K, Duan X and Wang X 2019 Nat. Electron. 2 563
Related articles from Frontiers Journals
[1] Tian-Sheng Zeng, Liangdong Hu, and W. Zhu. Bosonic Halperin (441) Fractional Quantum Hall Effect at Filling Factor $\nu=2/5$[J]. Chin. Phys. Lett., 2022, 39(1): 077301
[2] Bin Han, Junjie Zeng, and Zhenhua Qiao. In-Plane Magnetization-Induced Corner States in Bismuthene[J]. Chin. Phys. Lett., 2022, 39(1): 077301
[3] Rubah Kausar, Chao Zheng, and Xin Wan. Level Statistics Crossover of Chiral Surface States in a Three-Dimensional Quantum Hall System[J]. Chin. Phys. Lett., 2021, 38(5): 077301
[4] Na Jiang and Min Lu. Topological Distillation by Principal Component Analysis in Disordered Fractional Quantum Hall States[J]. Chin. Phys. Lett., 2020, 37(11): 077301
[5] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 077301
[6] Min Lu, Na Jiang, Xin Wan. Quasihole Tunneling in Disordered Fractional Quantum Hall Systems[J]. Chin. Phys. Lett., 2019, 36(8): 077301
[7] Qiu-Shi Wang, Bin Zhang, Wei-Zhu Yi, Meng-Nan Chen, Baigeng Wang, R. Shen. Impurity Effects at Surfaces of a Photon-Dressed Bi$_2$Se$_3$ Thin Film[J]. Chin. Phys. Lett., 2018, 35(10): 077301
[8] Shou-juan Zhang, Wei-xiao Ji, Chang-wen Zhang, Shu-feng Zhang, Ping Li, Sheng-shi Li, Shi-shen Yan. Discovery of Two-Dimensional Quantum Spin Hall Effect in Triangular Transition-Metal Carbides[J]. Chin. Phys. Lett., 2018, 35(8): 077301
[9] Ru Zheng, Rong-Qiang He, Zhong-Yi Lu. An Anderson Impurity Interacting with the Helical Edge States in a Quantum Spin Hall Insulator[J]. Chin. Phys. Lett., 2018, 35(6): 077301
[10] Xia-Yin Liu, Jia-Lu Wang, Wei You, Ting-Ting Wang, Hai-Yang Yang, Wen-He Jiao, Hong-Ying Mao, Li Zhang, Jie Cheng, Yu-Ke Li. Anisotropic Magnetoresistivity in Semimetal TaSb$_2$[J]. Chin. Phys. Lett., 2017, 34(12): 077301
[11] X.-X. Yuan, L. He, S.-T. Wang, D.-L. Deng, F. Wang, W.-Q. Lian, X. Wang, C.-H. Zhang, H.-L. Zhang, X.-Y. Chang, L.-M. Duan. Observation of Topological Links Associated with Hopf Insulators in a Solid-State Quantum Simulator[J]. Chin. Phys. Lett., 2017, 34(6): 077301
[12] Yu-Ying Zhu, Meng-Meng Bai, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Guang-Tong Liu, Li Lu. Coulomb-Dominated Oscillations in Fabry–Perot Quantum Hall Interferometers[J]. Chin. Phys. Lett., 2017, 34(6): 077301
[13] Xia Dai, Cong-Cong Le, Xian-Xin Wu, Sheng-Shan Qin, Zhi-Ping Lin, Jiang-Ping Hu. Topological Phase in Non-centrosymmetric Material NaSnBi[J]. Chin. Phys. Lett., 2016, 33(12): 077301
[14] Hua-Ling Yu, Zhang-Yin Zhai, Xin-Tian Bian. Integer Quantum Hall Effect in a Two-Orbital Square Lattice with Chern Number $C=2$[J]. Chin. Phys. Lett., 2016, 33(11): 077301
[15] SUN Liang, WAN Shao-Long. Chiral Current in the Lattice Model of Weyl Semimetal[J]. Chin. Phys. Lett., 2015, 32(5): 077301
Viewed
Full text


Abstract