Chin. Phys. Lett.  2020, Vol. 37 Issue (7): 076801    DOI: 10.1088/0256-307X/37/7/076801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene
Hang Yang1, Wei Chen2,3, Ming-Yang Li4, Feng Xiong3, Guang Wang1, Sen Zhang1, Chu-Yun Deng1*, Gang Peng1*, and Shi-Qiao Qin3
1College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
2China Aerodynamics Research and Development Center, Hypervelocity Aerodynamics Institute, Mianyang 621000, China
3College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
4College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
Cite this article:   
Hang Yang, Wei Chen, Ming-Yang Li et al  2020 Chin. Phys. Lett. 37 076801
Download: PDF(3605KB)   PDF(mobile)(4319KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Due to the lack of surface dangling bonds in graphene, the direct growth of high-$\kappa$ films via atomic layer deposition (ALD) technique often produces the dielectrics with a poor quality, which hinders its integration in modern semiconductor industry. Previous pretreatment approaches, such as chemical functionalization with ozone and plasma treatments, would inevitably degrade the quality of the underlying graphene. Here, we tackled this problem by utilizing an effective and convenient physical method. In detail, the graphene surface was pretreated with the deposition of thermally evaporated ultrathin Al metal layer prior to the Al$_{2}$O$_{3}$ growth by ALD. Then the device was placed in a drying oven for 30 min to be naturally oxidized as a seed layer. With the assistance of an Al oxide seed layer, pinhole-free Al$_{2}$O$_{3}$ dielectrics growth on graphene was achieved. No detective defects or disorders were introduced into graphene by Raman characterization. Moreover, our fabricated graphene top-gated field effect transistor exhibited high mobility ($\sim $6200 cm$^{2}$V$^{-1}$s$^{-1}$) and high transconductance ($\sim $117 μS). Thin dielectrics demonstrated a relative permittivity of 6.5 over a large area and a leakage current less than 1.6 pA/μm$^{2}$. These results indicate that Al oxide functionalization is a promising pathway to achieve scaled gate dielectrics on graphene with high performance.
Received: 29 March 2020      Published: 21 June 2020
PACS:  68.65.Pq (Graphene films)  
  72.80.Vp (Electronic transport in graphene)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Supported by Strengthening Project of Science and Technology Commission Foundation under Grant No. 2019JCJQZD.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/7/076801       OR      https://cpl.iphy.ac.cn/Y2020/V37/I7/076801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hang Yang
Wei Chen
Ming-Yang Li
Feng Xiong
Guang Wang
Sen Zhang
Chu-Yun Deng
Gang Peng
and Shi-Qiao Qin
[1] Novoselov K S, Fal V, Colombo L, Gellert P, Schwab M and Kim K 2012 Nature 490 192
[2] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[3] Ma Q, Lui C H, Song J C, Lin Y, Kong J F, Cao Y, Dinh T H, Nair N L, Fang W and Watanabe K 2019 Nat. Nanotechnol. 14 145
[4] Yang H, Qin S, Zheng X, Wang G, Tan Y, Peng G and Zhang X 2017 J. Nanomater. 7 286
[5] Chen W, Qin S, Zhang X A, Zhang S, Fang J, Wang G, Wang C, Wang L and Chang S 2014 Carbon 77 1090
[6] Luo F, Fan Y, Peng G, Xu S, Yang Y, Yuan K, Liu J, Ma W, Xu W and Zhu Z H 2019 ACS Photon. 6 2117
[7] Jang C, Adam S, Chen J H, Williams E D, Sarma S D and Fuhrer M 2008 Phys. Rev. Lett. 101 146805
[8] Zou X, Wang J, Chiu C H, Wu Y, Xiao X, Jiang C, Wu W W, Mai L, Chen T and Li J 2014 Adv. Mater. 26 6255
[9] George S M 2010 Chem. Rev. 110 111
[10] Puurunen R L 2005 J. Appl. Phys. 97 9
[11] Yang H, Tan C, Deng C, Zhang R, Zheng X, Zhang X, Hu Y, Guo X, Wang G and Jiang T 2019 Small 15 1904482
[12] Jandhyala S, Mordi G, Lee B, Lee G, Floresca C, Cha P R, Ahn J, Wallace R M, Chabal Y J and Kim M J 2012 ACS Nano 6 2722
[13] Wang L, Travis J J, Cavanagh A S, Liu X, Koenig S P, Huang P Y, George S M and Bunch J S 2012 Nano Lett. 12 3706
[14] Kim H G and Lee H B R 2017 Chem. Mater. 29 3809
[15] Cheng L, Qin X, Lucero A T, Azcatl A, Huang J, Wallace R M, Cho K and Kim J 2014 ACS Appl. Mater. & Interfaces 6 11834
[16] Price K M, Schauble K E, McGuire F A, Farmer D B and Franklin A D 2017 ACS Appl. Mater. & Interfaces 9 23072
[17] Shin W C, Bong J H, Choi S Y and Cho B J 2013 ACS Appl. Mater. & Interfaces 5 11515
[18] Wang X, Tabakman S M and Dai H 2008 J. Am. Chem. Soc. 130 8152
[19] Sangwan V K, Jariwala D, Filippone S A, Karmel H J, Johns J E, Alaboson J M, Marks T J, Lauhon L J and Hersam M C 2013 Nano Lett. 13 1162
[20] Alaboson J M, Wang Q H, Emery J D, Lipson A L, Bedzyk M J, Elam J W, Pellin M J and Hersam M C 2011 ACS Nano 5 5223
[21] Xiang D, Han C, Wu J, Zhong S, Liu Y, Lin J, Zhang X A, Hu W P, Özyilmaz B and Neto A C 2015 Nat. Commun. 6 6485
[22] Dignam M, Fawcett W and Böhni H 1966 J. Electrochem. Soc. 113 656
[23] Fuhrer M S and Hone J 2013 Nat. Nanotechnol. 8 146
[24] Zheng L, Cheng X, Cao D, Wang G, Wang Z, Xu D, Xia C, Shen L, Yu Y and Shen D 2014 ACS Appl. Mater. & Interfaces 6 7014
[25] Liu Y, Cai Y, Zhang G, Zhang Y W and Ang K W 2017 Adv. Funct. Mater. 27 1604638
[26] Zhang Y, Qiu Z, Cheng X, Xie H, Wang H, Xie X, Yu Y and Liu R 2014 J. Phys. D 47 055106
[27] Lin K X, Li D S, Ye Y, Jiang W G, Ye Z G, Qin Q H and Zou W 2018 Acta Phys. Sin. 67 246802 (in Chinese)
[28] Liao L, Bai J, Qu Y, Huang Y and Duan X 2010 Nanotechnology 21 015705
[29] Yang H, Qin S, Peng G, Zheng X and Zhang X 2016 Nano 11 1650141
[30] Malard L, Pimenta M, Dresselhaus G and Dresselhaus M 2009 Phys. Rep. 473 51
[31] Zheng X, Chen W, Wang G, Yu Y, Qin S, Fang J, Wang F and Zhang X A 2015 AIP Adv. 5 057133
[32] Nayfeh O M, Marr T and Dubey M 2011 IEEE Electron Device Lett. 32 473
[33] Guo B, Xiao Q, Wang S and Zhang H 2019 Laser & Photon. Rev. 13 1800327
[34] Kaushik N, Mackenzie D M, Thakar K, Goyal N, Mukherjee B, Boggild P, Petersen D H and Lodha S 2017 npj 2D Mater. Appl. 1 1
[35] Na J, Lee Y T, Lim J A, Hwang D K, Kim G T, Choi W K and Song Y W 2014 ACS Nano 8 11753
[36] Zheng Y, Hu Z, Han C, Guo R, Xiang D, Lei B, Wang Y, He J, Lai M and Chen W 2019 Nano Res. 12 531
[37] Xia J, Chen F, Li J and Tao N 2009 Nat. Nanotechnol. 4 505
[38] Dhanabalan S C, Dhanabalan B, Ponraj J S, Bao Q and Zhang H 2017 Adv. Opt. Mater. 5 1700257
[39] Zhou Y, Zhang M, Guo Z, Miao L, Han S, Wang Z, Zhang X, Zhang H and Peng Z 2017 Mater. Horiz. 4 997
[40] Lee B, Mordi G, Kim M, Chabal Y, Vogel E, Wallace R, Cho K, Colombo L and Kim J 2010 Appl. Phys. Lett. 97 043107
[41] Jandhyala S, Mordi G, Lee B and Kim J 2012 ECS Trans. 45 39
[42] Wu Y, Ye P, Capano M A, Xuan Y, Sui Y, Qi M, Cooper J A, Shen T, Pandey D and Prakash G 2008 Appl. Phys. Lett. 92 092102
[43] Oh J G, Pak K, Kim C S, Bong J H, Hwang W S, Im S G and Cho B J 2018 Small 14 1703035
[44] Williams J, DiCarlo L and Marcus C 2007 Science 317 638
[45] Park D W, Mikael S, Chang T H, Gong S and Ma Z 2015 Appl. Phys. Lett. 106 102106
Related articles from Frontiers Journals
[1] Jie Jiang, Long Yan, and Haiping Fang. Effect of Oxide Content of Graphene Oxide Membrane on Remarkable Adsorption for Calcium Ions[J]. Chin. Phys. Lett., 2021, 38(10): 076801
[2] Xueyan Li, Han Lin, Yuejin Zhao, and Baohua Jia. Diffraction-Limited Imaging with a Graphene Metalens[J]. Chin. Phys. Lett., 2020, 37(10): 076801
[3] Zhibin Zhang, Jiajie Qi, Mengze Zhao, Nianze Shang, Yang Cheng, Ruixi Qiao, Zhihong Zhang, Mingchao Ding, Xingguang Li, Kehai Liu, Xiaozhi Xu, Kaihui Liu, Can Liu, and Muhong Wu. Scrolled Production of Large-Scale Continuous Graphene on Copper Foils[J]. Chin. Phys. Lett., 2020, 37(10): 076801
[4] Gang Li, Hong-Wei Cheng, Li-Fang Guo, Kai-Ying Wang, Zai-Jun Cheng. An Efficiency Enhanced Graphene/n-Si Schottky Junction for Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 076801
[5] S. Fahad, M. Ali, S. Ahmed, S. Khan, S. Alam, S. Akhtar. Effect of Metal Contact and Rapid Thermal Annealing on Electrical Characteristics of Graphene Matrix[J]. Chin. Phys. Lett., 2017, 34(10): 076801
[6] Ze-Zhao He, Ke-Wu Yang, Cui Yu, Qing-Bin Liu, Jing-Jing Wang, Xu-Bo Song, Ting-Ting Han, Zhi-Hong Feng, Shu-Jun Cai. Comparative Study of Monolayer and Bilayer Epitaxial Graphene Field-Effect Transistors on SiC Substrates[J]. Chin. Phys. Lett., 2016, 33(08): 076801
[7] XIANG Lang, WU Jian, MA Shuang-Ying, WANG Fang, ZHANG Kai-Wang. Nanoindentation Models of Monolayer Graphene and Graphyne under Point Load Pattern Studied by Molecular Dynamics[J]. Chin. Phys. Lett., 2015, 32(09): 076801
[8] FAN Tian-Ju, YUAN Chun-Qiu, TANG Wei, TONG Song-Zhao, LIU Yi-Dong, HUANG Wei, MIN Yong-Gang, Arthur J. Epstein. A Novel Method of Fabricating Flexible Transparent Conductive Large Area Graphene Film[J]. Chin. Phys. Lett., 2015, 32(07): 076801
[9] LUO Wen-Gang, WANG Hua-Feng, CAI Kai-Ming, HAN Wen-Peng, TAN Ping-Heng, HU Ping-An, WANG Kai-You. Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil[J]. Chin. Phys. Lett., 2014, 31(06): 076801
[10] XIE Nan, GONG Hui-Qi, ZHOU Zhi, GUO Xiao-Dong, YAN Shi-Chao, SUN Qian, XING Sirui, WU Wei, PEI Shin-shem, BAO Jiming, SHAN Xin-Yan, GUO Yang, LU Xing-Hua . Visualization of a Maze-Like Reconstruction of Graphene on a Copper Surface at the Atomic Scale[J]. Chin. Phys. Lett., 2013, 30(5): 076801
[11] WANG Wen-Rong, LIANG Chen, LI Tie, YANG Heng, LU Na, WANG Yue-Lin. Graphene Domains Synthesized on Electroplated Copper by Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2013, 30(2): 076801
[12] HUANG Qing-Song, GUO Li-Wei, WANG Wen-Jun, WANG Gang, WANG Wan-Yan, JIA Yu-Ping, LIN Jing -Jing, LI Kang, CHEN Xiao-Long. Raman Spectrum of Epitaxial Graphene on SiC (0001) by Pulsed Electron Irradiation[J]. Chin. Phys. Lett., 2010, 27(4): 076801
Viewed
Full text


Abstract