Chin. Phys. Lett.  2020, Vol. 37 Issue (6): 067101    DOI: 10.1088/0256-307X/37/6/067101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Fermionic Analogue of High Temperature Hawking Radiation in Black Phosphorus
Hang Liu1,5, Jia-Tao Sun1,2,5**, Chenchen Song1,5, Huaqing Huang3, Feng Liu3,4**, Sheng Meng1,4,5**
1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
3Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA
4Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
5University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article:   
Hang Liu, Jia-Tao Sun, Chenchen Song et al  2020 Chin. Phys. Lett. 37 067101
Download: PDF(1956KB)   PDF(mobile)(2948KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Time-periodic laser driving can create nonequilibrium states not accessible in equilibrium, opening new regimes in materials engineering and topological phase transitions. We report that black phosphorus (BP) exhibits spatially nonuniform topological Floquet–Dirac states under laser illumination, mimicking the "gravity" felt by fermionic quasiparticles in the same way as that for a Schwarzschild black hole (SBH). Quantum tunneling of electrons from a type-II Dirac cone (inside BH) to a type-I Dirac cone (outside BH) emits an SBH-like Planck radiation spectrum. The Hawking temperature $T_{\rm H}$ obtained for a fermionic analog of BH in the bilayer BP is approximately 3 K, which is several orders of magnitude higher than that in previous works. Our work sheds light on increasing $T_{\rm H}$ from the perspective of engineering 2D materials by time-periodic light illumination. The predicted SBH-like Hawking radiation, accessible in BP thin films, provides clues to probe analogous astrophysical phenomena in solids.
Received: 18 May 2020      Published: 30 May 2020
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  78.47.-p (Spectroscopy of solid state dynamics)  
Fund: *Supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0300902 and 2016YFA0202300), the National Basic Research Program of China (Grant No. 2015CB921001), the National Natural Science Foundation of China (Grant Nos. 11774396, 91850120 and 11974045), and the Strategic Priority Research Program (B) of CAS (Grant Nos. XDB30000000 and XDB330301). H. H. and F. L. were supported by U.S. DOE-BES (Grant No. DE-FG02-04ER46148).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/6/067101       OR      https://cpl.iphy.ac.cn/Y2020/V37/I6/067101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hang Liu
Jia-Tao Sun
Chenchen Song
Huaqing Huang
Feng Liu
Sheng Meng
[1] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
[2] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405
[3] Tsui D C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559
[4] Laughlin R B 1983 Phys. Rev. Lett. 50 1395
[5] Haldane F D 1988 Phys. Rev. Lett. 61 2015
[6] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61
[7] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[8] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[9] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[10] Koenig M, Wiedmann S, Bruene C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[11] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[12] Zhu Z, Winkler G W, Wu Q, Li J and Soluyanov A A 2016 Phys. Rev. X 6 031003
[13] Bradlyn B, Cano J, Wang Z, Vergniory M G, Felser C, Cava R J and Bernevig B A 2016 Science 353 aaf5037
[14] Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
[15] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[16] Weng H M, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
[17] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495
[18] Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X 5 031013
[19] Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M and Ding H 2015 Nat. Phys. 11 724
[20] Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X and Chen G F 2015 Phys. Rev. X 5 031023
[21] Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G Q, Wang B K, Alidoust N, Bian G, Neupane M, Zhang C L, Jia S, Bansil A, Lin H and Hasan M Z 2015 Nat. Commun. 6 7373
[22] Lv B Q, Muff S, Qian T, Song Z D, Nie S M, Xu N, Richard P, Matt C E, Plumb N C, Zhao L X, Chen G F, Fang Z, Dai X, Dil J H, Mesot J, Shi M, Weng H M and Ding H 2015 Phys. Rev. Lett. 115 217601
[23] Volovik G E and Zhang K 2017 J. Low Temp. Phys. 189 276
[24] Guan S, Yu Z M, Liu Y, Liu G B, Dong L, Lu Y, Yao Y and Yang S A 2017 npj Quantum Mater. 2 23
[25] Huang H, Jin K H and Liu F 2018 Phys. Rev. B 98 121110(R)
[26] Liu H, Sun J T, Cheng C, Liu F and Meng S 2018 Phys. Rev. Lett. 120 237403
[27] Westström A and Ojanen T 2017 Phys. Rev. X 7 041026
[28] Hawking S W 1974 Nature 248 30
[29] Hartle J B and Hawking S W 1976 Phys. Rev. D 13 2188
[30] Bardeen J M 1981 Phys. Rev. Lett. 46 382
[31] Unruh W G 1981 Phys. Rev. Lett. 46 1351
[32] Unruh W G 1995 Phys. Rev. D 51 2827
[33] Garay L J, Anglin J R, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 85 4643
[34] Lahav O, Itah A, Blumkin A, Gordon C, Rinott S, Zayats A and Steinhauer J 2010 Phys. Rev. Lett. 105 240401
[35] Garay L J, Anglin J R, Cirac J I and Zoller P 2001 Phys. Rev. A 63 023611
[36] Steinhauer J 2016 Nat. Phys. 12 959
[37] Horstmann B, Reznik B, Fagnocchi S and Cirac J I 2010 Phys. Rev. Lett. 104 250403
[38] Giovanazzi S 2005 Phys. Rev. Lett. 94 061302
[39] Leonhardt U and Piwnicki P 2000 Phys. Rev. Lett. 84 822
[40] Leonhardt U 2002 Nature 415 406
[41] Schutzhold R and Unruh W G 2005 Phys. Rev. Lett. 95 031301
[42] Philbin T G, Kuklewicz C, Robertson S, Hill S, Konig F and Leonhardt U 2008 Science 319 1367
[43] Belgiorno F, Cacciatori S L, Clerici M, Gorini V, Ortenzi G, Rizzi L, Rubino E, Sala V G and Faccio D 2010 Phys. Rev. Lett. 105 203901
[44] Schutzhold R and Unruh W G 2011 Phys. Rev. Lett. 107 149401
[45] Elazar M, Fleurov V and Bar-Ad S 2012 Phys. Rev. A 86 063821
[46] Liberati S, Prain A and Visser M 2012 Phys. Rev. D 85 084014
[47] Unruh W G and Schützhold R 2003 Phys. Rev. D 68 024008
[48] Unruh W G and Schützhold R 2012 Phys. Rev. D 86 064006
[49] Han T, Kribs G D and McElrath B 2003 Phys. Rev. Lett. 90 031601
[50] Corda C 2015 Class. Quantum Grav. 32 195007
[51] Kerner R and Mann R B 2008 Class. Quantum Grav. 25 095014
[52] Ling X, Wang H, Huang S X, Xia F N and Dresselhaus M S 2015 Proc. Natl. Acad. Sci. USA 112 4523
[53] Rodin A S, Carvalho A and Castro Neto A H 2014 Phys. Rev. Lett. 112 176801
[54] Deng B, Tran V, Xie Y, Jiang H, Li C, Guo Q, Wang X, Tian H, Koester S J, Wang H, Cha J J, Xia Q, Yang L and Xia F 2017 Nat. Commun. 8 14474
[55] Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J and Kim K S 2015 Science 349 723
[56] Kim J, Baik S S, Jung S W, Sohn Y, Ryu S H, Choi H J, Yang B J and Kim K S 2017 Phys. Rev. Lett. 119 226801
[57] Zhao J, Yu R, Weng H and Fang Z 2016 Phys. Rev. B 94 195104
[58] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[59] Dutreix C, Stepanov E A and Katsnelson M I 2016 Phys. Rev. B 93 241404
[60] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[61] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[62] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[63] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun. 185 2309
[64] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419
[65] Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997
[66] Meng S and Kaxiras E 2008 J. Chem. Phys. 129 054110
[67]Volovik G E, The Universe in a Helium Droplet (Oxford: Oxford University Press)
[68] Parikh M K 2000 Phys. Rev. Lett. 85 5042
[69] Roberts A, Cormode D, Reynolds C, Newhouse-Illige T, LeRoy B J and Sandhu A S 2011 Appl. Phys. Lett. 99 051912
[70] Wang Y H, Steinberg H, Jarillo-Herrero P and Gedik N 2013 Science 342 453
[71] Mahmood F, Chan C K, Alpichshev Z, Gardner D, Lee Y, Lee P A and Gedik N 2016 Nat. Phys. 12 306
[72] Wiebe J, Wachowiak A, Meier F, Haude D, Foster T, Morgenstern M and Wiesendanger R 2004 Rev. Sci. Instrum. 75 4871
[73] Liu G, Wang G, Zhu Y, Zhang H, Zhang G, Wang X, Zhou Y, Zhang W, Liu H, Zhao L, Meng J, Dong X, Chen C, Xu Z and Zhou X J 2008 Rev. Sci. Instrum. 79 023105
Related articles from Frontiers Journals
[1] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 067101
[2] Sheng Wang, Zia ur Rehman, Zhanfeng Liu, Tongrui Li, Yuliang Li, Yunbo Wu, Hongen Zhu, Shengtao Cui, Yi Liu, Guobin Zhang, Li Song, and Zhe Sun. Tailoring of Bandgap and Spin-Orbit Splitting in ZrSe$_{2}$ with Low Substitution of Ti for Zr[J]. Chin. Phys. Lett., 2022, 39(7): 067101
[3] Lulu Liu, Shoutao Zhang, and Haijun Zhang. Pressure-Driven Ne-Bearing Polynitrides with Ultrahigh Energy Density[J]. Chin. Phys. Lett., 2022, 39(5): 067101
[4] Kun Luo, Baozhong Li, Lei Sun, Yingju Wu, Yanfeng Ge, Bing Liu, Julong He, Bo Xu, Zhisheng Zhao, and Yongjun Tian. Novel Boron Nitride Polymorphs with Graphite-Diamond Hybrid Structure[J]. Chin. Phys. Lett., 2022, 39(3): 067101
[5] Bin Han, Junjie Zeng, and Zhenhua Qiao. In-Plane Magnetization-Induced Corner States in Bismuthene[J]. Chin. Phys. Lett., 2022, 39(1): 067101
[6] Zhe Huang, Xianbiao Shi, Gaoning Zhang, Zhengtai Liu, Soohyun Cho, Zhicheng Jiang, Zhonghao Liu, Jishan Liu, Yichen Yang, Wei Xia, Weiwei Zhao, Yanfeng Guo, and Dawei Shen. Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn$_3$[J]. Chin. Phys. Lett., 2021, 38(10): 067101
[7] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 067101
[8] Yi Jiang, Zhong Fang, and Chen Fang. A $\boldsymbol{k}$$\cdot$$\boldsymbol{p}$ Effective Hamiltonian Generator[J]. Chin. Phys. Lett., 2021, 38(7): 067101
[9] Zhilin Xu, Shuai-Hua Ji, Lin Tang, Jian Wu, Na Li, Xinqiang Cai, and Xi Chen. Molecular Beam Epitaxy Growth and Electronic Structures of Monolayer GdTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 067101
[10] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 067101
[11] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 067101
[12] Zhenjiang Han, Han Liu, Quan Li, Dan Zhou, and Jian Lv. Superior Mechanical Properties of GaAs Driven by Lattice Nanotwinning[J]. Chin. Phys. Lett., 2021, 38(4): 067101
[13] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 067101
[14] Chen Qiu, Ruyue Cao, Cai-Xin Zhang, Chen Zhang, Dan Guo, Tao Shen, Zhu-You Liu, Yu-Ying Hu, Fei Wang, and Hui-Xiong Deng. First-Principles Study of Intrinsic Point Defects of Monolayer GeS[J]. Chin. Phys. Lett., 2021, 38(2): 067101
[15] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 067101
Viewed
Full text


Abstract