Chin. Phys. Lett.  2020, Vol. 37 Issue (6): 066201    DOI: 10.1088/0256-307X/37/6/066201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation
Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang**, Fangfei Li**, Tian Cui 
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Cite this article:   
Jiayu Wang , Qiang Zhou , Siyang Guo  et al  2020 Chin. Phys. Lett. 37 066201
Download: PDF(1328KB)   PDF(mobile)(1320KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Silane (SiH$_{4}$) is a promising hydrogen-rich compound for pursing high temperature superconducting. Previous high pressure measurements of Raman, x-ray diffraction and theoretical studies on SiH$_{4}$ mainly focused on its polymorphic structures above 50 GPa, while the structure and the stability under lower pressure range are still unclear. Here we report an investigation of condensed SiH$_{4}$ by Brillouin scattering measurements at high temperature up to 407 K and high pressure up to 18 GPa. Brillouin scattering frequencies of fluid SiH$_{4}$ under compression are obtained under isothermal conditions of 300 K, 359 K and 407 K. The SiH$_{4}$ becomes unstable with increasing temperature and subsequently decomposes into silicon and H$_{2}$. We find that compression at room temperature induces two velocity anomalies corresponding to a fluid-solid state transition and a phase IV to phase V transition, respectively. Brillouin scattering spectra has been a powerful tool to investigate the fruitful phases and structure transitions in the hydrogen-rich compound under extreme conditions.
Received: 28 March 2020      Published: 26 May 2020
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  62.60.+v (Acoustical properties of liquids)  
  64.60.-i (General studies of phase transitions)  
  78.35.+c (Brillouin and Rayleigh scattering; other light scattering)  
Fund: *Supported by the National Key Research and Development Program (Grant No. 2017YFA0403704), the National Natural Science Foundation of China (Grant Nos. 11474127, 11574112, 11274137, and 11504127), the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT1132), and China Postdoctoral Science Foundation (Grant No. 2015M570265).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/6/066201       OR      https://cpl.iphy.ac.cn/Y2020/V37/I6/066201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiayu Wang 
Qiang Zhou 
Siyang Guo 
Yanping Huang 
Xiaoli Huang 
Lu Wang
Fangfei Li
Tian Cui 
[1] Odden J O, Egeberg P K and Kjekshus A 2005 J. Non-Cryst. Solids 351 1317
[2] Ashcroft N W 2004 Phys. Rev. Lett. 92 187002
[3] Ashcroft N W 1968 Phys. Rev. Lett. 21 1748
[4] Yao Y, Tse J S, Ma Y et al 2007 Europhys. Lett. 78 37003
[5] Feng J, Grochala W, Jaron T et al 2006 Phys. Rev. Lett. 96 017006
[6] Pickard C J and Needs R J 2006 Phys. Rev. Lett. 97 045504
[7] Zhang H, Jin X, Lv Y et al 2015 Sci. Rep. 5 8845
[8] Becerra R and Walsh R 1992 J. Phys. Chem. 96 10856
[9] Chen X J, Struzhkin V V, Song Y et al 2008 Proc. Natl. Acad. Sci. USA 105 20
[10] Eremets M I, Trojan I A, Medvedev S A et al 2008 Science 319 1506
[11] Degtyareva O, Proctor J E, Guillaume C L et al 2009 Solid State Commun. 149 1583
[12] Strobel T A, Goncharov A F, Seagle C T et al 2011 Phys. Rev. B 83 144102
[13] Hanfland M, Proctor J E, Guillaume C L et al 2011 Phys. Rev. Lett. 106 095503
[14] Durajski A P and Szczȩśniak R 2014 Mod. Phys. Lett. B 28 1450052
[15] Cui W W, Shi J M, Liu H Y et al 2015 Sci. Rep. 5 13039
[16] Zhong X F, Liu F S, Cai L C et al 2014 Chin. Phys. Lett. 31 126201
[17] Shimizu H, Kitagawa T and Sasaki S 1993 Phys. Rev. B 47 11567
[18] Li M, Li F F, Gao W et al 2010 J. Chem. Phys. 133 044503
[19] Yen J and Nicol M 1992 J. Appl. Phys. 72 5535
[20] Ragan D D, Gustavsen R and Schiferl D 1992 J. Appl. Phys. 72 5539
[21] Polian A 2003 J. Raman Spectrosc. 34 633
[22] Sandercock J 1970 Opt. Commun. 2 73
[23] Li F F, Li M, Cui Q L et al 2009 J. Chem. Phys. 131 134502
[24] Whitfield C H, Brody E M and Bassett W A 1976 Rev. Sci. Instrum. 47 942
[25] Wang C H 1986 Mol. Phys. 58 497
[26] Mountain R D 1966 J. Res. Natl. Bur. Stand. Sect. A 70A 207
[27] Degtyareva O, Martinez Canales M, Bergara A et al 2007 Phys. Rev. B 76 064123
Related articles from Frontiers Journals
[1] Linchao Yu, Song Huang, Xiangzhuo Xing, Xiaolei Yi, Yan Meng, Nan Zhou, Zhixiang Shi, and Xiaobing Liu. Critical Current Density, Vortex Pinning, and Phase Diagram in the NaCl-Type Superconductors InTe$_{1- x}$Se$_{x}$ ($x = 0$, 0.1, 0.2)[J]. Chin. Phys. Lett., 2023, 40(3): 066201
[2] Xue Ming, Chengping He, Xiyu Zhu, Huiyang Gou, and Hai-Hu Wen. Growth and Characterization of a New Superconductor GaBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{11+\delta}$[J]. Chin. Phys. Lett., 2023, 40(1): 066201
[3] Caizi Zhang, Fangfei Li, Xinmiao Wei, Mengqi Guo, Yingzhan Wei, Liang Li, Xinyang Li, and Qiang Zhou. Abnormal Elastic Changes for Cubic-Tetragonal Transition of Single-Crystal SrTiO$_{3}$[J]. Chin. Phys. Lett., 2022, 39(9): 066201
[4] Yan Wang, Mingguang Yao, Xing Hua, Fei Jin, Zhen Yao, Hua Yang, Ziyang Liu, Quanjun Li, Ran Liu, Bo Liu, Linhai Jiang, and Bingbing Liu. Structural Evolution of $D_{5h}$(1)-C$_{90}$ under High Pressure: A Mediate Allotrope of Nanocarbon from Zero-Dimensional Fullerene to One-Dimensional Nanotube[J]. Chin. Phys. Lett., 2022, 39(5): 066201
[5] Jun-Yi Miao, Zhan-Sheng Lu, Feng Peng, and Cheng Lu. New Members of High-Energy-Density Compounds: YN$_{5}$ and YN$_{8}$[J]. Chin. Phys. Lett., 2021, 38(6): 066201
[6] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 066201
[7] Fang Hong, Liuxiang Yang, Pengfei Shan, Pengtao Yang, Ziyi Liu, Jianping Sun, Yunyu Yin, Xiaohui Yu, Jinguang Cheng, and Zhongxian Zhao. Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures[J]. Chin. Phys. Lett., 2020, 37(10): 066201
[8] Yu-Chen Shang, Fang-Ren Shen, Xu-Yuan Hou, Lu-Yao Chen, Kuo Hu, Xin Li, Ran Liu, Qiang Tao, Pin-Wen Zhu, Zhao-Dong Liu, Ming-Guang Yao, Qiang Zhou, Tian Cui, and Bing-Bing Liu. Pressure Generation above 35 GPa in a Walker-Type Large-Volume Press[J]. Chin. Phys. Lett., 2020, 37(8): 066201
[9] Qi-Long Cao, Duo-Hui Huang , Jun-Sheng Yang , and Fan-Hou Wang . Pressure Effects on the Transport and Structural Properties of Metallic Glass-Forming Liquid[J]. Chin. Phys. Lett., 2020, 37(7): 066201
[10] Jie-Min Xu, Shu-Yang Wang, Wen-Jun Wang, Yong-Hui Zhou, Xu-Liang Chen, Zhao-Rong Yang, and Zhe Qu. Possible Tricritical Behavior and Anomalous Lattice Softening in van der Waals Itinerant Ferromagnet Fe$_{3}$GeTe$_{2}$ under High Pressure[J]. Chin. Phys. Lett., 2020, 37(7): 066201
[11] Jingyan Song, Shuai Duan, Xin Chen, Xiangjun Li , Bingchao Yang , and Xiaobing Liu. Synthesis of Highly Stable One-Dimensional Black Phosphorus/h-BN Heterostructures: A Novel Flexible Electronic Platform[J]. Chin. Phys. Lett., 2020, 37(7): 066201
[12] Lei Gao, Qiulin Liu, Jiawei Yang, Yue Wu, Zhehong Liu, Shijun Qin, Xubin Ye, Shifeng Jin, Guodong Li, Huaizhou Zhao, Youwen Long. High-Pressure Synthesis and Thermal Transport Properties of Polycrystalline BAs$_{x}$[J]. Chin. Phys. Lett., 2020, 37(6): 066201
[13] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation *[J]. Chin. Phys. Lett., 0, (): 066201
[14] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 066201
[15] Yanling Wu, Xia Yin, Jiazila Hasaien, Yang Ding, Jimin Zhao. High-Pressure Ultrafast Dynamics in Sr$_{2}$IrO$_{4}$: Pressure-Induced Phonon Bottleneck Effect[J]. Chin. Phys. Lett., 2020, 37(4): 066201
Viewed
Full text


Abstract