Chin. Phys. Lett.  2020, Vol. 37 Issue (6): 066202    DOI: 10.1088/0256-307X/37/6/066202
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
High-Pressure Synthesis and Thermal Transport Properties of Polycrystalline BAs$_{x}$
Lei Gao1,2, Qiulin Liu1,2, Jiawei Yang1,2, Yue Wu3, Zhehong Liu1,2, Shijun Qin1,2, Xubin Ye1,2, Shifeng Jin1,2, Guodong Li1,2, Huaizhou Zhao1,2,4**, Youwen Long1,2,5**
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
4Yangtze River Delta Physics Rearch Center, Liyang 213300, China
5Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Lei Gao, Qiulin Liu, Jiawei Yang et al  2020 Chin. Phys. Lett. 37 066202
Download: PDF(1039KB)   PDF(mobile)(1034KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Polycrystalline BAs$_{x}$ ($x = 0.80$–1.10) compounds with different boron-to-arsenic elemental molar ratios were synthesized by a high-pressure and high-temperature sintering method. Compared with other ambient-pressure synthesis methods, high pressure can significantly promote the reaction speed as well as the reaction yield. As the content of arsenic increases from $x = 0.91$ to 1.10, the thermal conductivity of BAs$_{x}$ gradually increases from 53 to 65 W$\cdot$m$^{-1}\cdot$K$^{-1}$. Furthermore, the temperature dependence of thermal conductivities of these samples reveals an Umklapp scattering due to the increasing phonon population. This work provides a highly efficient method for polycrystalline BAs synthesis.
Received: 24 March 2020      Published: 26 May 2020
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  65.60.+a (Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.)  
  72.15.Cz (Electrical and thermal conduction in amorphous and liquid metals and Alloys ?)  
Fund: *Supported by the National Key R&D Program of China (Grant Nos. 2018YFE0103200 and 2018YFA0305700), the National Natural Science Foundation of China (Grant Nos. 51772324, 11934017, 11921004, and 11574378), and the Chinese Academy of Sciences (Grant Nos. QYZDB–SSW–SLH013 and GJHZ1773).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/6/066202       OR      https://cpl.iphy.ac.cn/Y2020/V37/I6/066202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lei Gao
Qiulin Liu
Jiawei Yang
Yue Wu
Zhehong Liu
Shijun Qin
Xubin Ye
Shifeng Jin
Guodong Li
Huaizhou Zhao
Youwen Long
[1] Moore G E 1998 Proc. IEEE 86 82
[2] Waldrop M M 2016 Nature 530 144
[3] Zhong J W, Liu D X, Li Z and Sun X W 2012 IEEE Asia Pacific Conference on Antennas and Propagation (Singapore, 27–29 August 2012) pp 157–159
[4]Klemens P G 1991 Thermal Conductivity of Pure Metals and Alloys (Berlin: Springer-Verlag) p 6
[5] Wei L H, Kuo P K, Thomas R L, Anthony T R and Banholzer W F 1993 Phys. Rev. Lett. 70 3764
[6] Lindsay L, Broido D A and Reinecke T L 2013 Phys. Rev. Lett. 111 025901
[7] Lv B, Lan Y, Wang X, Zhang Q, Hu Y, Jacobson A J, Broido D, Chen G, Ren Z and Chu C W 2015 Appl. Phys. Lett. 106 074105
[8] Feng T, Lindsay L and Ruan X 2017 Phys. Rev. B 96 161201
[9] Tian F, Song B, Chen X, Ravichandran N K, Lv Y, Chen K, Sullivan S, Kim J, Zhou Y, Liu T H, Goni M, Ding Z, Sun J, Udalamatta Gamage G A G, Sun H, Ziyaee H, Huyan S, Deng L, Zhou J, Schmidt A J, Chen S, Chu C W, Huang P Y, Broido D, Shi L, Chen G and Ren Z 2018 Science 361 582
[10] Kang J S, Li M, Wu H, Nguyen H and Hu Y 2018 Science 361 575
[11] Li S, Zheng Q, Lv Y, Liu X, Wang X, Huang P Y, Cahill D G and Lv B 2018 Science 361 579
[12] Kim J, Evans D A, Sellan D P, Williams O M, Ou E, Cowley A H and Shi L 2016 Appl. Phys. Lett. 108 201905
[13] Wang S, Swingle S F, Ye H, Fan F R F, Cowley A H and Bard A J 2012 J. Am. Chem. Soc. 134 11056
[14]Larson A C and Dreele R B V 1994 Los Alamos Natl. Laboratory Report LAUR 86–748
[15] Perri J A, Laplaca S and Post B 1958 Acta Crystallogr. 11 310
[16]Kittel C 2005 Introduction to Solid State Physics (New York: Wiley) p 125
[17]Klemens P G 1991 Thermal Conductivity of Pure Metals and Alloys (Berlin: Springer-Verlag) p 405
[18] Golikova O A, Zaitsev V K, Orlov V M, Petrov A V, Stilbans L S and Tkalenko E N 1974 Phys. Status Solidi A 21 405
[19] Tian F and Ren Z 2019 Angew. Chem. Int. Ed. Engl. 58 5824
[20] Greiner E S and Gutowski J A 1957 J. Appl. Phys. 28 1364
[21] Masetti G and Solmi S 1979 IEE J. Solid-State Electron. Devices 3 65
Related articles from Frontiers Journals
[1] Linchao Yu, Song Huang, Xiangzhuo Xing, Xiaolei Yi, Yan Meng, Nan Zhou, Zhixiang Shi, and Xiaobing Liu. Critical Current Density, Vortex Pinning, and Phase Diagram in the NaCl-Type Superconductors InTe$_{1- x}$Se$_{x}$ ($x = 0$, 0.1, 0.2)[J]. Chin. Phys. Lett., 2023, 40(3): 066202
[2] Xue Ming, Chengping He, Xiyu Zhu, Huiyang Gou, and Hai-Hu Wen. Growth and Characterization of a New Superconductor GaBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{11+\delta}$[J]. Chin. Phys. Lett., 2023, 40(1): 066202
[3] Caizi Zhang, Fangfei Li, Xinmiao Wei, Mengqi Guo, Yingzhan Wei, Liang Li, Xinyang Li, and Qiang Zhou. Abnormal Elastic Changes for Cubic-Tetragonal Transition of Single-Crystal SrTiO$_{3}$[J]. Chin. Phys. Lett., 2022, 39(9): 066202
[4] Yan Wang, Mingguang Yao, Xing Hua, Fei Jin, Zhen Yao, Hua Yang, Ziyang Liu, Quanjun Li, Ran Liu, Bo Liu, Linhai Jiang, and Bingbing Liu. Structural Evolution of $D_{5h}$(1)-C$_{90}$ under High Pressure: A Mediate Allotrope of Nanocarbon from Zero-Dimensional Fullerene to One-Dimensional Nanotube[J]. Chin. Phys. Lett., 2022, 39(5): 066202
[5] Jun-Yi Miao, Zhan-Sheng Lu, Feng Peng, and Cheng Lu. New Members of High-Energy-Density Compounds: YN$_{5}$ and YN$_{8}$[J]. Chin. Phys. Lett., 2021, 38(6): 066202
[6] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 066202
[7] Fang Hong, Liuxiang Yang, Pengfei Shan, Pengtao Yang, Ziyi Liu, Jianping Sun, Yunyu Yin, Xiaohui Yu, Jinguang Cheng, and Zhongxian Zhao. Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures[J]. Chin. Phys. Lett., 2020, 37(10): 066202
[8] Yu-Chen Shang, Fang-Ren Shen, Xu-Yuan Hou, Lu-Yao Chen, Kuo Hu, Xin Li, Ran Liu, Qiang Tao, Pin-Wen Zhu, Zhao-Dong Liu, Ming-Guang Yao, Qiang Zhou, Tian Cui, and Bing-Bing Liu. Pressure Generation above 35 GPa in a Walker-Type Large-Volume Press[J]. Chin. Phys. Lett., 2020, 37(8): 066202
[9] Qi-Long Cao, Duo-Hui Huang , Jun-Sheng Yang , and Fan-Hou Wang . Pressure Effects on the Transport and Structural Properties of Metallic Glass-Forming Liquid[J]. Chin. Phys. Lett., 2020, 37(7): 066202
[10] Jie-Min Xu, Shu-Yang Wang, Wen-Jun Wang, Yong-Hui Zhou, Xu-Liang Chen, Zhao-Rong Yang, and Zhe Qu. Possible Tricritical Behavior and Anomalous Lattice Softening in van der Waals Itinerant Ferromagnet Fe$_{3}$GeTe$_{2}$ under High Pressure[J]. Chin. Phys. Lett., 2020, 37(7): 066202
[11] Jingyan Song, Shuai Duan, Xin Chen, Xiangjun Li , Bingchao Yang , and Xiaobing Liu. Synthesis of Highly Stable One-Dimensional Black Phosphorus/h-BN Heterostructures: A Novel Flexible Electronic Platform[J]. Chin. Phys. Lett., 2020, 37(7): 066202
[12] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation[J]. Chin. Phys. Lett., 2020, 37(6): 066202
[13] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation *[J]. Chin. Phys. Lett., 0, (): 066202
[14] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 066202
[15] Yanling Wu, Xia Yin, Jiazila Hasaien, Yang Ding, Jimin Zhao. High-Pressure Ultrafast Dynamics in Sr$_{2}$IrO$_{4}$: Pressure-Induced Phonon Bottleneck Effect[J]. Chin. Phys. Lett., 2020, 37(4): 066202
Viewed
Full text


Abstract