CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
High-Pressure Synthesis and Thermal Transport Properties of Polycrystalline BAs$_{x}$ |
Lei Gao1,2, Qiulin Liu1,2, Jiawei Yang1,2, Yue Wu3, Zhehong Liu1,2, Shijun Qin1,2, Xubin Ye1,2, Shifeng Jin1,2, Guodong Li1,2, Huaizhou Zhao1,2,4**, Youwen Long1,2,5** |
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum, Beijing 102249, China 4Yangtze River Delta Physics Rearch Center, Liyang 213300, China 5Songshan Lake Materials Laboratory, Dongguan 523808, China
|
|
Cite this article: |
Lei Gao, Qiulin Liu, Jiawei Yang et al 2020 Chin. Phys. Lett. 37 066202 |
|
|
Abstract Polycrystalline BAs$_{x}$ ($x = 0.80$–1.10) compounds with different boron-to-arsenic elemental molar ratios were synthesized by a high-pressure and high-temperature sintering method. Compared with other ambient-pressure synthesis methods, high pressure can significantly promote the reaction speed as well as the reaction yield. As the content of arsenic increases from $x = 0.91$ to 1.10, the thermal conductivity of BAs$_{x}$ gradually increases from 53 to 65 W$\cdot$m$^{-1}\cdot$K$^{-1}$. Furthermore, the temperature dependence of thermal conductivities of these samples reveals an Umklapp scattering due to the increasing phonon population. This work provides a highly efficient method for polycrystalline BAs synthesis.
|
|
Received: 24 March 2020
Published: 26 May 2020
|
|
PACS: |
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
65.60.+a
|
(Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.)
|
|
72.15.Cz
|
(Electrical and thermal conduction in amorphous and liquid metals and Alloys ?)
|
|
|
Fund: *Supported by the National Key R&D Program of China (Grant Nos. 2018YFE0103200 and 2018YFA0305700), the National Natural Science Foundation of China (Grant Nos. 51772324, 11934017, 11921004, and 11574378), and the Chinese Academy of Sciences (Grant Nos. QYZDB–SSW–SLH013 and GJHZ1773). |
|
|
[1] | Moore G E 1998 Proc. IEEE 86 82 |
[2] | Waldrop M M 2016 Nature 530 144 |
[3] | Zhong J W, Liu D X, Li Z and Sun X W 2012 IEEE Asia Pacific Conference on Antennas and Propagation (Singapore, 27–29 August 2012) pp 157–159 |
[4] | Klemens P G 1991 Thermal Conductivity of Pure Metals and Alloys (Berlin: Springer-Verlag) p 6 |
[5] | Wei L H, Kuo P K, Thomas R L, Anthony T R and Banholzer W F 1993 Phys. Rev. Lett. 70 3764 |
[6] | Lindsay L, Broido D A and Reinecke T L 2013 Phys. Rev. Lett. 111 025901 |
[7] | Lv B, Lan Y, Wang X, Zhang Q, Hu Y, Jacobson A J, Broido D, Chen G, Ren Z and Chu C W 2015 Appl. Phys. Lett. 106 074105 |
[8] | Feng T, Lindsay L and Ruan X 2017 Phys. Rev. B 96 161201 |
[9] | Tian F, Song B, Chen X, Ravichandran N K, Lv Y, Chen K, Sullivan S, Kim J, Zhou Y, Liu T H, Goni M, Ding Z, Sun J, Udalamatta Gamage G A G, Sun H, Ziyaee H, Huyan S, Deng L, Zhou J, Schmidt A J, Chen S, Chu C W, Huang P Y, Broido D, Shi L, Chen G and Ren Z 2018 Science 361 582 |
[10] | Kang J S, Li M, Wu H, Nguyen H and Hu Y 2018 Science 361 575 |
[11] | Li S, Zheng Q, Lv Y, Liu X, Wang X, Huang P Y, Cahill D G and Lv B 2018 Science 361 579 |
[12] | Kim J, Evans D A, Sellan D P, Williams O M, Ou E, Cowley A H and Shi L 2016 Appl. Phys. Lett. 108 201905 |
[13] | Wang S, Swingle S F, Ye H, Fan F R F, Cowley A H and Bard A J 2012 J. Am. Chem. Soc. 134 11056 |
[14] | Larson A C and Dreele R B V 1994 Los Alamos Natl. Laboratory Report LAUR 86–748 |
[15] | Perri J A, Laplaca S and Post B 1958 Acta Crystallogr. 11 310 |
[16] | Kittel C 2005 Introduction to Solid State Physics (New York: Wiley) p 125 |
[17] | Klemens P G 1991 Thermal Conductivity of Pure Metals and Alloys (Berlin: Springer-Verlag) p 405 |
[18] | Golikova O A, Zaitsev V K, Orlov V M, Petrov A V, Stilbans L S and Tkalenko E N 1974 Phys. Status Solidi A 21 405 |
[19] | Tian F and Ren Z 2019 Angew. Chem. Int. Ed. Engl. 58 5824 |
[20] | Greiner E S and Gutowski J A 1957 J. Appl. Phys. 28 1364 |
[21] | Masetti G and Solmi S 1979 IEE J. Solid-State Electron. Devices 3 65 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|