Chin. Phys. Lett.  2020, Vol. 37 Issue (2): 027501    DOI: 10.1088/0256-307X/37/2/027501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Stable Intrinsic Long Range Antiferromagnetic Coupling in Dilutely V Doped Chalcopyrite
Weiyi Gong, Ching-Him Leung, Chuen-Keung Sin, Jingzhao Zhang, Xiaodong Zhang, Bin Xi, Junyi Zhu**
Department of Physics, The Chinese University of Hong Kong, Hong Kong
Cite this article:   
Weiyi Gong, Ching-Him Leung, Chuen-Keung Sin et al  2020 Chin. Phys. Lett. 37 027501
Download: PDF(1999KB)   PDF(mobile)(2712KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A stable and long-range antiferromagnetic (AFM) coupling without charge carrier mediators has been searched for a long time, but the existence of this kind of coupling is still lacking. Based on first principle calculations, we systematically study carrier free long-range AFM coupling in four transition metal chalcopyrite systems: ABTe$_2$ (A = Cu or Ag, B = Ga or In) in the dilute doping case. The AFM coupling is mainly due to the $p$–$d$ coupling and electron redistribution along the interacting chains. The relatively small energy difference between $p$ and $d$ orbitals, as well as between dopants and atoms in the middle of the chain can enhance the stability of long-range AFM configurations. A multi-band Hubbard model is proposed to provide fundamental understanding of long-range AFM coupling.
Received: 03 October 2019      Published: 18 January 2020
PACS:  75.50.Pp (Magnetic semiconductors)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  75.30.Et (Exchange and superexchange interactions)  
Fund: Supported by Chinese University of Hong Kong (CUHK) under Grant No. 4053084, University Grants Committee of Hong Kong under Grant No. 24300814, and Start-Up Funding of CUHK.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/2/027501       OR      https://cpl.iphy.ac.cn/Y2020/V37/I2/027501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Weiyi Gong
Ching-Him Leung
Chuen-Keung Sin
Jingzhao Zhang
Xiaodong Zhang
Bin Xi
Junyi Zhu
[1]Wang Y Y, Song C, Zhang J Y and Pan F 2017 Prog. Nat. Sci.: Mater. Int. 27 208
[2]Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005
[3]Fukami S, Zhang C, DuttaGupta S, Kurenkov A and Ohno H 2016 Nat. Mater. 15 535
[4]Cheng R, Xiao J, Niu Q and Brataas A 2014 Phys. Rev. Lett. 113 057601
[5]Shirane G, Nathans R and Chen C W 1964 Phys. Rev. 134 A1547
[6]Zaja̧c M, Gosk J, Kamińska M, Twardowski A, Szyszko T and Podsiadł{o} S 2001 Appl. Phys. Lett. 79 2432
[7]Ruderman M A and Kittel C 1954 Phys. Rev. 96 99
[8]Kasuya T 1956 Prog. Theor. Phys. 16 45
[9]Yosida K 1957 Phys. Rev. 106 893
[10]Anderson P W 1950 Phys. Rev. 79 350
[11]Goodenough J B 1955 Phys. Rev. 100 564
[12]Raebiger H, Lany S and Zunger A 2007 Phys. Rev. Lett. 99 167203
[13]Ku W, Rosner H, Pickett W E and Scalettar R T 2002 Phys. Rev. Lett. 89 167204
[14]Akamatsu H, Kumagai Y, Oba F, Fujita K, Murakami H, Tanaka K and Tanaka I 2011 Phys. Rev. B 83 214421
[15]Zhang X, Liu K, He J Q, Wu H, Huang Q Z, Lin J H, Lu Z Y and Huang F Q 2015 Sci. Rep. 5 15910
[16]Xiang H, Lee C, Koo H J, Gong X and Whangbo M H 2013 Dalton Trans. 42 823
[17]Chan C K, Zhang X D, Zhang Y O, Tse K F, Deng B, Zhang J Z and Zhu J Y 2018 Chin. Phys. Lett. 35 017502
[18]Zhang X D, Zhang J Z, Tse K F, Zhang S B and Zhu J Y 2019 Phys. Rev. B 99 134435
[19]Coury M E A, Dudarev S L, Foulkes W M C, Horsfield A P, Ma P W and Spencer J S 2016 Phys. Rev. B 93 075101
[20]Jaffe J E and Zunger A 1984 Phys. Rev. B 29 1882
[21]Yoodee K, Woolley J C, and Sa-yakanit V 1984 Phys. Rev. B 30 5904
[22]Slater J C and Koster G F 1954 Phys. Rev. 94 1498
Related articles from Frontiers Journals
[1] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 027501
[2] Yu Guo , Nanshu Liu , Yanyan Zhao , Xue Jiang , Si Zhou, and Jijun Zhao . Enhanced Ferromagnetism of CrI$_{3}$ Bilayer by Self-Intercalation[J]. Chin. Phys. Lett., 2020, 37(10): 027501
[3] Qixun Guo, Yu Wu, Longxiang Xu, Yan Gong, Yunbo Ou, Yang Liu, Leilei Li, Yu Yan, Gang Han, Dongwei Wang, Lihua Wang, Shibing Long, Bowei Zhang, Xun Cao, Shanwu Yang, Xuemin Wang, Yizhong Huang, Tao Liu, Guanghua Yu, Ke He, Jiao Teng. Electrically Tunable Wafer-Sized Three-Dimensional Topological Insulator Thin Films Grown by Magnetron Sputtering[J]. Chin. Phys. Lett., 2020, 37(5): 027501
[4] Baoyue Li, Yifeng Cao, Lin Xu, Guang Yang, Zhi Ma, Miao Ye, Tianxing Ma. Anisotropy Engineering Edge Magnetism in Zigzag Honeycomb Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(6): 027501
[5] Chunkai Chan, Xiaodong Zhang, Yiou Zhang, Kinfai Tse, Bei Deng, Jingzhao Zhang, Junyi Zhu. Stepping Stone Mechanism: Carrier-Free Long-Range Magnetism Mediated by Magnetized Cation States in Quintuple Layer[J]. Chin. Phys. Lett., 2018, 35(1): 027501
[6] Fei Sun, Cong Xu, Shuang Yu, Bi-Juan Chen, Guo-Qiang Zhao, Zheng Deng, Wen-Ge Yang, Chang-Qing Jin. Synchrotron X-Ray Diffraction Studies on the New Generation Ferromagnetic Semiconductor Li(Zn,Mn)As under High Pressure[J]. Chin. Phys. Lett., 2017, 34(6): 027501
[7] Chao-Jing Lin, You-Guo Shi, Yong-Qing Li. Analytical Descriptions of Magnetic Properties and Magnetoresistance in n-Type HgCr$_2$Se$_4$[J]. Chin. Phys. Lett., 2016, 33(07): 027501
[8] LI Hang, ZHANG Xin-Hui. Evaluation of the Ultrafast Thermal Manipulation of Magnetization Precession in Ferromagnetic Semiconductor (Ga,Mn)As[J]. Chin. Phys. Lett., 2015, 32(06): 027501
[9] PAN Dong, WANG Si-Liang, WANG Hai-Long, YU Xue-Zhe, WANG Xiao-Lei, ZHAO Jian-Hua. Structure and Magnetic Properties of (In,Mn)As Based Core-Shell Nanowires Grown on Si(111) by Molecular-Beam Epitaxy[J]. Chin. Phys. Lett., 2014, 31(07): 027501
[10] XIA Yu-Qian, SUN Lei, XU Hao, HAN Jing-Wen, ZHANG Yi-Bo, WANG Yi, ZHANG Sheng-Dong. Magnetic Properties of Co-Doped TiO2 Films Grown on TiN Buffered Silicon Substrates[J]. Chin. Phys. Lett., 2014, 31(2): 027501
[11] Hassen Dakhlaoui. Quantum Size and Doping Concentration Effects on the Current-Voltage Characteristics in GaN Resonant Tunneling Diodes[J]. Chin. Phys. Lett., 2013, 30(7): 027501
[12] SUN Shao-Hua, WU Ping, XING Peng-Fei . Room-Temperature d0 Ferromagnetism in Nitrogen-Doped In2O3 Films[J]. Chin. Phys. Lett., 2013, 30(7): 027501
[13] JIANG Feng-Xian, XI Shi-Bo, MA Rong-Rong, QIN Xiu-Fang, FAN Xiao-Chen, ZHANG Min-Gang, ZHOU Jun-Qi, XU Xiao-Hong. Room-Temperature Ferromagnetism in Fe/Sn-Codoped In2O3 Powders and Thin Films[J]. Chin. Phys. Lett., 2013, 30(4): 027501
[14] CHEN Zhi-Yuan, CHEN Zhi-Quan, PAN Rui-Kun, WANG Shao-Jie. Vacancy-Induced Ferromagnetism in SnO2 Nanocrystals: A Positron Annihilation Study[J]. Chin. Phys. Lett., 2013, 30(2): 027501
[15] XI Shi-Bo, CUI Ming-Qi, QIN Xiu-Fang, XU Xiao-Hong, XU Wei, ZHENG Lei, ZHOU Jing, LIU Li-Juan, YANG Dong-Liang, GUO Zhi-Ying. Origin of Ferromagnetism in Zn1?xCoxO Thin Films: Evidences Provided by Hard and Soft X-Ray Absorption Spectroscopy[J]. Chin. Phys. Lett., 2012, 29(12): 027501
Viewed
Full text


Abstract