CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Reduction of Electron Leakage of AlGaN-Based Deep Ultraviolet Laser Diodes Using an Inverse-Trapezoidal Electron Blocking Layer |
Zhong-Qiu Xing1,2,3, Yong-Jie Zhou4, Yu-Huai Liu1,2,3**, Fang Wang1,2,3** |
1National Joint Research Center for Electron Materials and Systems, Zhengzhou University, Zhengzhou 450001 2International Joint Laboratory of Electron Materials and Systems, Zhengzhou University, Zhengzhou 450001 3School of Information Engineering, Zhengzhou University, Zhengzhou 450001 4School of Physics and Electron Engineering, Xinyang Normal University, Xinyang 464000
|
|
Cite this article: |
Zhong-Qiu Xing, Yong-Jie Zhou, Yu-Huai Liu et al 2020 Chin. Phys. Lett. 37 027302 |
|
|
Abstract To improve the optical and electrical properties of AlGaN-based deep ultraviolet lasers, an inverse-trapezoidal electron blocking layer is designed. Lasers with three different structural electron blocking layers of rectangular, trapezoidal and inverse-trapezoidal structures are established. The energy band, electron concentration, electron current density, $P$–$I$ and $V$–$I$ characteristics, and the photoelectric conversion efficiency of different structural devices are investigated by simulation. The results show that the optical and electrical properties of the inverse-trapezoidal electron blocking layer laser are better than those of rectangular and trapezoidal structures, owing to the effectively suppressed electron leakage.
|
|
Received: 17 November 2019
Published: 18 January 2020
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No. 61176008, the Special Project for Inter-government Collaboration of State Key Research and Development Program under Grant No. 2016YFE0118400, the Key Project of Science and Technology of Henan Province under Grant No. 172102410062, and the National Natural Science Foundation of China–Henan Provincial Joint Fund for Key Project under Grant No. U1604263. |
|
|
[1] | Satter M M, Kim H J and Lochner Z 2012 IEEE J. Quantum Electron. 48 703 | [2] | Hirayama H, Yatabe T and Noguchi N 2007 Appl. Phys. Lett. 91 71901 | [3] | Sun W, Shatalov M and Deng J 2010 Appl. Phys. Lett. 96 061102 | [4] | Yang W, Li D and He J 2013 Phys. Status Solidi 10 346 | [5] | Xie J, Ni X and Fan 2008 Appl. Phys. Lett. 93 21107 | [6] | Hansen M, Piprek J and Pattison P M 2002 Appl. Phys. Lett. 81 4275 | [7] | Tu R C, Tun C J and Pan S M 2003 IEEE Photon. Technol. Lett. 15 1342 | [8] | Han S H, Lee D Y and Lee S J 2009 Appl. Phys. Lett. 94 231123 | [9] | Dong S G and Chen G J 2013 Appl. Mech. Mater. 440 25 | [10] | Chen J R, Ling S C and Huang H M 2009 Appl. Phys. B 95 145 | [11] | Chen P, Zhao D G and Jiang D S 2015 Phys. Status Solidi 212 2936 | [12] | Yang W, Li D and Liu N et al 2012 Appl. Phys. Lett. 100 031105 | [13] | Bojarska A, Goss J and Stanczyk S 2018 Superlattices Microstruct. 116 114 | [14] | Zhang Y, Kao T T and Liu J P et al 2011 J. Appl. Phys. 109 083115 | [15] | Mehta K, Liu Y S and Wang J 2018 IEEE J. Quantum Electron. 1 1 | [16] | Wang Y F, Niass I, Wang F et al 2019 Chin. Phys. Lett. 36 057301 | [17] | Tian W, Feng Z H and Liu B 2013 Opt. Quantum Electron. 45 381 | [18] | Fiorentini V, Bernardini F and Ambacher O 2002 Appl. Phys. Lett. 80 1204 | [19] | Dong K X, Chen D J, Liu et al 2012 Appl. Phys. Lett. 100 073507 | [20] | Zhang G, Wang C and Cao B 2010 Opt. Express 18 7019 | [21] | Vurgaftman I and Meyer J R 2003 J. Appl. Phys. 94 3675 | [22] | Ren C X 2016 J. Mater. Sci. & Technol. 32 418 | [23] | Wang T H and Xu J L 2015 Mater. Sci. Semicond. Process. 29 95 | [24] | Li Y Y, Li A Z, Wei L et al 2009 Chin. Phys. Lett. 26 087804 | [25] | Wada O 1994 South Afr. J. Occupational Ther. 43 1754 | [26] | Zhang L Q, Jiang D S and Zhu J J 2009 J. Appl. Phys. 105 023104 | [27] | Zhang M, Li Y and Chen S 2014 Superlattices Microstruct. 75 63 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|