Chin. Phys. Lett.  2020, Vol. 37 Issue (12): 127501    DOI: 10.1088/0256-307X/37/12/127501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Low Voltage Reversible Manipulation of Ferromagnetic Resonance Response in CoFeB/HfO$_{2}$ Heterostructures
Yangping Wang1,2, Hongyan Zhou3, Yibing Zhao1,2, Fufu Liu1,2, and Changjun Jiang1,2*
1Key Laboratory for Magnetism and Magnetic Materials (Ministry of Education), Lanzhou University, Lanzhou 730000, China
2Key Laboratory of Special Function Materials and Structure Design (Ministry of Education), Lanzhou University, Lanzhou 730000, China
3Institute of Electronic Materials, Lanzhou University, Lanzhou 730000, China
Cite this article:   
Yangping Wang, Hongyan Zhou, Yibing Zhao et al  2020 Chin. Phys. Lett. 37 127501
Download: PDF(962KB)   PDF(mobile)(953KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report that the ferromagnetic resonance (FMR) response of the CoFeB/HfO$_{2}$ heterostructures is stabilized and reversibly manipulated by ionic gel. Ionic gel with excellent flexibility is used as a medium to form an electric field. When a 4 V gate voltage is applied, the resonance field $H_{\rm r}$ and peak-to-peak linewidth $\Delta H_{\rm pp}$ at different angles are regulated. When $\theta = 20^{\circ}$, the $H_{\rm r}$ is regulated up to 82 Oe. When $\theta = 70^{\circ}$, $\Delta H_{\rm pp}$ is tuned up to 75 Oe. When the gate voltage is repeatedly applied, the FMR spectra can be freely switched between the initial state and the gated state. Our study provides an effective method to manipulate the damping of the magnetic film stably and reversibly.
Received: 23 August 2020      Published: 08 December 2020
PACS:  75.85.+t (Magnetoelectric effects, multiferroics)  
  75.78.-n (Magnetization dynamics)  
  75.78.Jp (Ultrafast magnetization dynamics and switching)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 51671099 and 11974149), the Open Foundation Project of Jiangsu Key Laboratory of Thin Films (Grant No. KJS1745), the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT-16R35), and the Fundamental Research Funds for the Central Universities.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/12/127501       OR      https://cpl.iphy.ac.cn/Y2020/V37/I12/127501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yangping Wang
Hongyan Zhou
Yibing Zhao
Fufu Liu
and Changjun Jiang
[1] Miron I M et al. 2011 Nature 476 189
[2] Zhu L et al. 2020 Adv. Electron. Mater. 6 1901131
[3] Fukami S, Anekawa T, Zhang C and Ohno H 2016 Nat. Nanotechnol. 11 621
[4] Chen J Y et al. 2017 Appl. Phys. Lett. 111 012402
[5] Chen X et al. 2018 Nat. Commun. 9 1
[6] Peng W L et al. 2019 Appl. Phys. Lett. 115 092402
[7] Jia C et al. 2015 Sci. Rep. 5 11111
[8] Saha S et al. 2020 Phys. Rev. B 101 224401
[9] Woltersdorf G et al. 2009 Phys. Rev. Lett. 102 257602
[10] Ganguly A et al. 2015 Sci. Rep. 5 17596
[11] Mondal S et al. 2017 Phys. Rev. B 96 054414
[12] Hou W et al. 2019 ACS Appl. Mater. & Interfaces 11 21727
[13] Li C et al. 2020 Curr. Appl. Phys. 20 883
[14] Liu Y T et al. 2016 J. Appl. Phys. 120 023901
[15] Hirai T et al. 2016 Appl. Phys. Express 9 063007
[16] Qiu X et al. 2018 Adv. Mater. 30 1705699
[17] Filianina M et al. 2020 Phys. Rev. Lett. 124 217701
[18] Ryu J, Lee S, Lee K J and Park B G 2020 Adv. Mater. 32 1907148
[19] Yi H T et al. 2014 Sci. Rep. 4 6604
[20] Yamada S, Sato T and Toshiyoshi H 2017 Appl. Phys. Lett. 110 253501
[21] Zhao S et al. 2018 ACS Nano 12 7167
[22] Song C et al. 2016 Chin. Phys. B 25 067502
[23] Wang C et al. 2018 ACS Appl. Mater. & Interfaces 10 29750
[24] Zhou C et al. 2018 Phys. Rev. Appl. 9 014006
[25] Cheng Y et al. 2018 Appl. Phys. Lett. 113 262403
[26] Peria W K et al. 2020 Phys. Rev. B 101 134430
[27] Sun L et al. 2018 J. Magn. Magn. Mater. 451 480
Related articles from Frontiers Journals
[1] Feng Li, Weiyuan Duan, Manuel Pomaska, Malte Köhler, Kaining Ding, Yong Pu, Urs Aeberhard, and Uwe Rau. Quantum Transport across Amorphous-Crystalline Interfaces in Tunnel Oxide Passivated Contact Solar Cells: Direct versus Defect-Assisted Tunneling[J]. Chin. Phys. Lett., 2021, 38(3): 127501
[2] Shilei Ji , Hong Wu , Shuang Zhou , Wei Niu , Lujun Wei , Xing-Ao Li , Feng Li, and Yong Pu. Enhancement of Curie Temperature under Built-in Electric Field in Multi-Functional Janus Vanadium Dichalcogenides[J]. Chin. Phys. Lett., 2020, 37(8): 127501
[3] Hao He, Jiang-Tao Zhao, Zhen-Lin Luo, Yuan-Jun Yang, Han Xu, Bin Hong, Liang-Xin Wang, Rui-Xue Wang, Chen Gao. The Electric-Field Controllable Non-Volatile 35$^{\circ}$ Rotation of Magnetic Easy Axis in Magnetoelectric CoFeB/(001)-Cut Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$-25%PbTiO$_{3}$ Heterostructure[J]. Chin. Phys. Lett., 2016, 33(06): 127501
[4] ZHAO Ke-Han, WANG Yu-Hang, SHI Xiao-Lan, LIU Na, ZHANG Liu-Wan. Ferroelectricity in the Ferrimagnetic Phase of Fe1?xMnxV2O4[J]. Chin. Phys. Lett., 2015, 32(08): 127501
[5] XIAO Li-Xia, JIN Zhao, XIA Zheng-Cai, SHI Li-Ran, HUANG Jun-Wei, CHEN Bo-Rong, SHANG Cui, WEI Meng, LONG Zhuo. Effects of Doping on the Magnetic Properties and Frustration of Hexagonal YMn0.9A0.1O3 (A=Al, Fe, and Cu)[J]. Chin. Phys. Lett., 2015, 32(01): 127501
[6] SONG Ying-Jie, ZHANG Qing-Hua, SHEN Xi, NI Xiao-Dong, YAO Yuan, YU Ri-Cheng. Room-Temperature Magnetism Realized by Doping Fe into Ferroelectric LiTaO3[J]. Chin. Phys. Lett., 2014, 31(1): 127501
[7] RAO Wei, WANG Yun-Bo, WANG Ye-An, GAO Jun-Xiong, ZHOU Wen-Li, YU Jun. Magnetostatic Coupling in Ba0.8Sr0.2TiO3/CoFe2O4 Magnetoelectric Composite Thin Films of 2-2-Type Structure[J]. Chin. Phys. Lett., 2014, 31(1): 127501
[8] WANG Ye-An, WANG Yun-Bo, RAO Wei, GAO Jun-Xiong, ZHOU Wen-Li, YU Jun. Electric and Magnetic Properties and Magnetoelectric Effect of the Ba0.8Sr0.2TiO3/CoFe2O4 Heterostructure Film by Radio-Frequency Magnetron Sputtering[J]. Chin. Phys. Lett., 2013, 30(4): 127501
[9] WANG Ye-An, WANG Yun-Bo, RAO Wei, GAO Jun-Xiong, ZHOU Wen-Li, YU Jun. Electric and Magnetic Properties of the (1-x)Ba0.6Sr0.4TiO3-xCoFe2O4 Multiferroic Composite Ceramics[J]. Chin. Phys. Lett., 2012, 29(6): 127501
[10] ZHOU Yun**, CHEN Miao-Gen, FENG Zhen-Jie, WANG Xin-Yan, CUI Yu-Jian, ZHANG Jin-Cang . High Magnetoelectric Coupling in Nano–Microscale Particulate Composites at Low Frequency[J]. Chin. Phys. Lett., 2011, 28(10): 127501
Viewed
Full text


Abstract