Chin. Phys. Lett.  2020, Vol. 37 Issue (12): 127401    DOI: 10.1088/0256-307X/37/12/127401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Gap Structure of 12442-Type KCa$_2$(Fe$_{1-x}$Co$_{x}$)$_4$As$_{4}$F$_2$ ($x$ = 0, 0.1) Revealed by Temperature Dependence of Lower Critical Field
Jianan Chu1,2,3, Teng Wang1,2,4, Han Zhang1,2,3, Yixin Liu1,2,3, Jiaxin Feng1,2,3, Zhuojun Li1,2, Da Jiang1,2,3, Gang Mu1,2,3*, Zengfeng Di1,3, and Xiaoming Xie1,2,3
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
2CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China
3University of Chinese Academy of Sciences, Beijing 100049, China
4School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
Cite this article:   
Jianan Chu, Teng Wang, Han Zhang et al  2020 Chin. Phys. Lett. 37 127401
Download: PDF(697KB)   PDF(mobile)(674KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report an in-depth investigation on the out-of-plane lower critical field $H_{\rm c1}$ of the KCa$_2$(Fe$_{1-x}$Co$_{x}$)$_4$As$_{4}$F$_2$ (12442-type, $x$ = 0, 0.1). The multi-gap feature is revealed by the kink in the temperature-dependent $H_{\rm c1}(T)$ curve for the two samples with different doping levels. Based on a simplified two-gap model, the magnitudes of the two gaps are determined to be $\varDelta_1$ = 1.2 meV and $\varDelta_2$ = 5.0 meV for the sample with $x$ = 0, $\varDelta_1$ =  0.86 meV and $\varDelta_2$ = 2.8 meV for that with $x$ = 0.1. With the cobalt doping, the ratio of energy gap to critical transition temperature ($\varDelta/k_{\rm B}T_{\rm c}$) remains almost unchanged for the smaller gap and is suppressed by 20% for the larger gap. For the undoped KCa$_2$Fe$_4$As$_{4}$F$_2$, the obtained gap sizes are generally consistent with the results of angle-resolved photoemission spectroscopy experiments.
Received: 09 September 2020      Published: 08 December 2020
PACS:  74.20.Rp (Pairing symmetries (other than s-wave))  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  74.70.Dd (Ternary, quaternary, and multinary compounds)  
  74.25.Op (Mixed states, critical fields, and surface sheaths)  
Fund: Supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2015187), the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB30000000), and the National Natural Science Foundation of China (Grant Nos. 11704395 and 11204338).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/12/127401       OR      https://cpl.iphy.ac.cn/Y2020/V37/I12/127401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jianan Chu
Teng Wang
Han Zhang
Yixin Liu
Jiaxin Feng
Zhuojun Li
Da Jiang
Gang Mu
Zengfeng Di
and Xiaoming Xie
[1] Bednorz J G and Müller K A 1986 Z. Phys. B 64 189
[2] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[3] Hirschfeld P J, Korshunov M M and Mazin I I 2011 Rep. Prog. Phys. 74 124508
[4] Mazin I I, Singh D J, Johannes M D and Du M H 2008 Phys. Rev. Lett. 101 057003
[5] Raghu S, Qi X L, Liu C X, Scalapino D J and Zhang S C 2008 Phys. Rev. B 77 220503
[6] Ma F, Lu Z Y and Xiang T 2008 Phys. Rev. B 78 224517
[7] Yildirim T 2008 Phys. Rev. Lett. 101 057010
[8] Si Q and Abrahams E 2008 Phys. Rev. Lett. 101 076401
[9] Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Feng C M and Cao G H 2016 J. Am. Chem. Soc. 138 7856
[10] Wang Z, He C, Tang Z, Wu S and Cao G 2017 Sci. Chin. Mater. 60 83
[11] Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Tao Q, Feng C M, Xu Z A and Cao G H 2017 J. Phys.: Condens. Matter 29 11LT01
[12] Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y and Cao G H 2017 Chem. Mater. 29 1805
[13] Wu S Q, Wang Z C, He C Y, Tang Z T, Liu Y and Cao G H 2017 Phys. Rev. Mater. 1 044804
[14] Wang T, Zhang C, Xu L C, Wang J H, Jiang S, Zhu Z W, Wang Z S, Chu J N, Feng J X, Wang L L, Li W, Hu T, Liu X S and Mu G 2020 Sci. Chin. Phys. Mech. & Astron. 63 227412
[15] Pyon S, Kobayashi Y, Takahashi A, Li W, Wang T, Mu G, Ichinose A, Kambara T, Yoshida A and Tamegai T 2020 Phys. Rev. Mater. 4 104801
[16] Zhang C, Hu T, Wang T, Wu Y, Yu A, Chu J, Zhang H, Xiao H, Peng W, Di Z, Qiao S and Mu G 2020 arXiv:2006.03338 [cond-mat.supr-con]
[17] Yu A B, Wang T, Wu Y F, Huang Z, Xiao H, Mu G and Hu T 2019 Phys. Rev. B 100 144505
[18] Terashima T, Matsushita Y, Yamase H, Kikugawa N, Abe H, Imai M, Uji S, Ishida S, Eisaki H, Iyo A, Kihou K, Lee C H, Wang T and Mu G 2020 Phys. Rev. B 102 054511
[19] Hong W, Song L, Liu B, Li Z, Zeng Z, Li Y, Wu D, Sui Q, Xie T, Danilkin S, Ghosh H, Ghosh A, Hu J, Zhao L, Zhou X, Qiu X, Li S and Luo H 2020 Phys. Rev. Lett. 125 117002
[20] Kirschner F K K, Adroja D T, Wang Z C, Lang F, Smidman M, Baker P J, Cao G H and Blundell S J 2018 Phys. Rev. B 97 060506(R)
[21] Smidman M, Kirschner F K K, Adroja D T, Hillier A D, Lang F, Wang Z C, Cao G H and Blundell S J 2018 Phys. Rev. B 97 060509
[22] Adroja D T, Kirschner F K K, Lang F, Smidman M, Hillier A D, Wang Z C, Cao G H, Stenning G B G and Blundell S J 2018 J. Phys. Soc. Jpn. 87 124705
[23] Huang Y Y, Wang Z C, Yu Y J, Ni J M, Li Q, Cheng E J, Cao G H and Li S Y 2019 Phys. Rev. B 99 020502(R)
[24] Wang Z C, Liu Y, Wu S Q, Shao Y T, Ren Z and Cao G H 2019 Phys. Rev. B 99 144501
[25] Xu B, Wang Z C, Sheveleva E, Lyzwa F, Marsik P, Cao G H and Bernhard C 2019 Phys. Rev. B 99 125119
[26] Wang T, Chu J N, Feng J X, Wang L L, Xu X G, Li W, Wen H H, Liu X S and Mu G 2020 Sci. Chin. Phys. Mech. & Astron. 63 297412
[27] Wu D, Hong W, Dong C, Wu X, Sui Q, Huang J, Gao Q, Li C, Song C, Luo H, Yin C, Xu Y, Luo X, Cai Y, Jia J, Wang Q, Huang Y, Liu G, Zhang S, Zhang F, Yang F, Wang Z, Peng Q, Xu Z, Qiu X, Li S, Luo H, Hu J, Zhao L and Zhou X J 2020 Phys. Rev. B 101 224508
[28] Wang T, Chu J N, Jin H, Feng J X, Wang L L, Song Y K, Zhang C, Li W, Li Z J, Hu T, Jiang D, Peng W, Liu X S and Mu G 2019 J. Phys. Chem. C 123 13925
[29] Ma Y H, Zhang H, Gao B, Hu K K, Ji Q C, Mu G, Huang F Q and Xie X M 2015 Supercond. Sci. Technol. 28 085008
[30] Ma Y H, Hu K K, Ji Q C, Gao B, Zhang H, Mu G, Huang F Q and Xie X M 2016 J. Cryst. Growth 451 161
[31] Ren C, Wang Z S, Luo H Q, Yang H, Shan L and Wen H H 2008 Phys. Rev. Lett. 101 257006
[32] Wang T, Ma Y H, Li W, Chu J N, Wang L L, Feng J X, Xiao H, Li Z J, Hu T, Liu X S and Mu G 2019 npj Quantum Mater. 4 33
[33] Wang G, Wang Z and Shi X 2016 Europhys. Lett. 116 37003
[34] Carrington A and Manzano F 2003 Physica C 385 205
Related articles from Frontiers Journals
[1] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 127401
[2] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 127401
[3] Li-Han Chen, Da Wang, Yi Zhou, Qiang-Hua Wang. Superconductivity, Pair Density Wave, and Néel Order in Cuprates[J]. Chin. Phys. Lett., 2020, 37(1): 127401
[4] Xi Zhang, Tianchuang Luo, Xiyao Hu, Jing Guo, Gongchang Lin, Yuehui Li, Yanzhao Liu, Xiaokang Li, Jun Ge, Ying Xing, Zengwei Zhu, Peng Gao, Liling Sun, Jian Wang. Superconductivity and Fermi Surface Anisotropy in Transition Metal Dichalcogenide NbTe$_{2}$[J]. Chin. Phys. Lett., 2019, 36(5): 127401
[5] Hui Meng, Huan Zhang, Wan-Sheng Wang, Qiang-Hua Wang. Thermal conductivity in near-nodal superconductors[J]. Chin. Phys. Lett., 2018, 35(12): 127401
[6] Ming-Qiang Ren, Ya-Jun Yan, Tong Zhang, Dong-Lai Feng. Possible Nodeless Superconducting Gaps in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ and YBa$_2$Cu$_3$O$_{7-x}$ Revealed by Cross-Sectional Scanning Tunneling Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(12): 127401
[7] Ye Xiong. Fano Resonances Can Provide Two Criteria to Distinguish Majorana Bound States from Other Candidates in Experiments[J]. Chin. Phys. Lett., 2016, 33(05): 127401
[8] Yu-Jia Long, Ling-Xiao Zhao, Pei-Pei Wang, Huai-Xin Yang, Jian-Qi Li, Hai Zi, Zhi-An Ren, Cong Ren, Gen-Fu Chen. Single Crystal Growth and Physical Property Characterization of Non-centrosymmetric Superconductor PbTaSe$_2$[J]. Chin. Phys. Lett., 2016, 33(03): 127401
[9] ZHU Jun, WANG Zhao-Sheng, WANG Zhen-Yu, HOU Xing-Yuan, LUO Hui-Qian, LU Xing-Ye, LI Chun-Hong, SHAN Lei, WEN Hai-Hu, REN Cong. Doping Induced Gap Anisotropy in Iron-Based Superconductors: a Point-Contact Andreev Reflection Study of BaFe2−xNixAs2 Single Crystals[J]. Chin. Phys. Lett., 2015, 32(07): 127401
[10] GONG Xin-Xin, ZHOU He-Xin, XU Peng-Chao, YUE Di, ZHU Kai, JIN Xiao-Feng, TIAN He, ZHAO Ge-Jian, CHEN Ting-Yong. Possible p-Wave Superconductivity in Epitaxial Bi/Ni Bilayers[J]. Chin. Phys. Lett., 2015, 32(06): 127401
[11] WU Xian-Xin, LE Cong-Cong, YUAN Jing, FAN Heng, HU Jiang-Ping. Magnetism in Quasi-One-Dimensional A2Cr3As3 (A=K,Rb) Superconductors[J]. Chin. Phys. Lett., 2015, 32(5): 127401
[12] LI Hai-Chao, XIANG Yuan-Yuan, WANG Qiang-Hua. Consistency between Itinerant and Local-Moment Pictures for Superconductivity in Alkaline Iron Selenide Superconductors[J]. Chin. Phys. Lett., 2014, 31(06): 127401
[13] HAN Qiang, LIU Jia, ZHANG Dan-Bo, WANG Zi-Dan. An Exotic Type of Fulde–Ferrel–Larkin–Ovchinnikov States in Spin-Orbit Coupled Condensates[J]. Chin. Phys. Lett., 2014, 31(05): 127401
[14] WANG Da, LU Hong-Yan, WANG Qiang-Hua. The Finite Temperature Effect on Josephson Junction between an s-Wave Superconductor and an s±-Wave Superconductor[J]. Chin. Phys. Lett., 2013, 30(7): 127401
[15] Hamidreza Emamipour, Jafar Emamipour. Zero-Bias Conductance versus Potential Strength of Interface in Ferromagnetic Superconductors[J]. Chin. Phys. Lett., 2012, 29(3): 127401
Viewed
Full text


Abstract