Chin. Phys. Lett.  2020, Vol. 37 Issue (12): 127301    DOI: 10.1088/0256-307X/37/12/127301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Fano Effect and Spin-Polarized Transport in a Triple-Quantum-Dot Interferometer Attached to Two Ferromagnetic Leads
Jiyuan Bai1, Kongfa Chen2*, Pengyu Ren1, Jianghua Li1, Zelong He1*, and Li Li3
1School of Electronic and Information Engineering, Yangtze Normal University, Chongqing 408003, China
2College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
3Key Lab of In-fiber Integrated Optics of Ministry of Education, College of Science, Harbin Engineering University, Harbin 150001, China
Cite this article:   
Jiyuan Bai, Kongfa Chen, Pengyu Ren et al  2020 Chin. Phys. Lett. 37 127301
Download: PDF(871KB)   PDF(mobile)(864KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the conductance and average current through a triple-quantum-dot interferometer coupled with two ferromagnetic leads using the nonequilibrium Green's function. The results show that the interference between the resonant process and the non-resonant process leads to the formation of Fano resonance. More Fano resonances can be observed by applying a time-dependent external field. As a Zeeman magnetic field is applied, the spin-up electron transport is depressed in a certain range of electron energy levels. A spin-polarized pulse device can be realized by adjusting the spin polarization parameters of ferromagnetic leads. Moreover, the $I$–$V$ characteristic curves show that under the influence of Fano resonance, the spin polarization is significantly enhanced by applying a relatively large reverse bias voltage. These results strongly suggest that the spin-polarized pulse device can be potentially applied as a spin-dependent quantum device.
Received: 07 August 2020      Published: 08 December 2020
PACS:  73.21.La (Quantum dots)  
  73.63.Kv (Quantum dots)  
  73.40.Gk (Tunneling)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11447132), the “Chunhui Plan” Cooperative Scientific Research Project of China (Grant No. 6101020101), and the Science and Technology Research Program of Chongqing Education Commission of China (Grant No. KJQN201801402).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/12/127301       OR      https://cpl.iphy.ac.cn/Y2020/V37/I12/127301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiyuan Bai
Kongfa Chen
Pengyu Ren
Jianghua Li
Zelong He
and Li Li
[1] Elzerman J M, Hanson R, van Willems B L H, Witkamp B, Vandersypen L M K and Kouwenhoven L P 2004 Nature 430 431
[2] Kiyama H, Nakajima T, Teraoka S, Oiwa A and Tarucha S 2015 Phys. Rev. B 91 155302
[3] Kaasbjerg K and Jauho A P 2016 Phys. Rev. Lett. 116 196801
[4] Zhao X, Yuan R Y, Ji A C, Yan H and Guo Y 2014 J. Appl. Phys. 116 103517
[5] Zhao H K and Zou W K 2015 Phys. Lett. A 379 389
[6] Ma Z S, Zhu Y, Li X Q, Lin T H and Su Z B 2004 Phys. Rev. B 69 045302
[7] Gong W J, Zheng Y S, Liu Y and Lü T Q 2006 Phys. Rev. B 73 245329
[8] An X T, Mu H Y, Xian L F and Liu J J 2012 Chin. Phys. B 21 077201
[9] Bao X L, He Z L and Chen K F 2020 Indian J. Phys. (in press)
[10] Wu S Q, Wand S J, Sun W L and Yu W L 2003 Phys. Lett. A 307 60
[11] Li Y X 2007 J. Phys.: Condens. Matter 19 496219
[12] Zhao H K, Wang J and Wang Q 2014 Phys. Lett. A 378 1553
[13] Zhang L L, Zhan G H, Li Z Z and Gong W J 2017 Phys. Rev. A 96 062133
[14] He Z L, Lü T Q, Cui L, Xue H J, Li L J and Yin H T 2011 Chin. Phys. B 20 117303
[15] He Z L, Lü T Q, Li H, Li L J, Cui L and Xue H J 2011 Phys. Scr. 84 035703
[16] He Z L, Li Q, Chen K F, Bai J Y and Dang S H 2018 Chin. Phys. Lett. 35 097301
[17] Ma J M, Zhao J, Zhang K C, Peng Y J and Chi F 2011 Nanoscale Res. Lett. 6 256
[18] Kondo K 2016 New J. Phys. 18 013002
[19] Zhang X G and Xiang T 2012 Int. J. Quantum Chem. 112 28
[20] An X T, Mu H Y, Li Y X and Liu J J 2011 Phys. Lett. A 375 4078
[21] Yang X, Zheng J, Chi F and Guo Y 2015 Appl. Phys. Lett. 106 193107
[22] Li J L and Li Y X 2010 Chin. Phys. Lett. 27 057202
[23] He Z L and Lü T Q 2012 Phys. Lett. A 376 2501
[24] Sun Q F, Wang J and Guo H 2005 Phys. Rev. B 71 165310
[25] Yin H T, Lü T Q, Liu X J and Xue H J 2009 Chin. Phys. Lett. 26 047302
[26] Bai J Y, He Z L and Yang S B 2014 Acta Phys. Sin. 63 017303 (in Chinese)
[27] Ellenberger C, Ihn T, Yannouleas C, Landman U, Ensslin K, Driscoll D and Gossard A C 2006 Phys. Rev. Lett. 96 126806
[28] Fu H H and Yao K L 2012 Appl. Phys. Lett. 100 013502
[29] Fu H H and Yao K L 2012 J. Appl. Phys. 111 094512
[30] He Z L, Bai J Y, Ye S J, Li L and Li C X 2017 Chin. Phys. Lett. 34 087301
[31] Bociana K and Rudzinski W 2013 Eur. Phys. J. B 86 439
[32] Trocha P and Weymann I 2015 Phys. Rev. B 91 235424
[33] Wingreen N S, Jacobsen K W and Wilkins J W 1989 Phys. Rev. B 40 11834
[34] Jauho A P, Wingreen N S and Meir Y 1994 Phys. Rev. B 50 5528
[35] Shangguan W Z, Au Y T C, Yu Y B and Kam C H 2001 Phys. Rev. B 63 235323
[36] de Ladrón G M L and Orellana P A 2006 Phys. Rev. B 73 205303
Related articles from Frontiers Journals
[1] Tian-Yi Zhang, Qing Yan, and Qing-Feng Sun. Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators[J]. Chin. Phys. Lett., 2021, 38(7): 127301
[2] Li-Guo Qin, Qin Wang. Modulating the Lasing Performance of the Quantum Dot-Cavity System by Adding a Resonant Driving Field[J]. Chin. Phys. Lett., 2017, 34(1): 127301
[3] Tian-Yi Han, Guang-Wei Deng, Da Wei, Guo-Ping Guo. Multiplexing Read-Out of Charge Qubits by a Superconducting Resonator[J]. Chin. Phys. Lett., 2016, 33(04): 127301
[4] Hui-Li Yin, Su-Ling Zhao, Zheng Xu, Li-Zhi Sun. Light-Emitting Diodes Based on All-Quantum-Dot Multilayer Films and the Influence of Various Hole-Transporting Layers on the Performance[J]. Chin. Phys. Lett., 2016, 33(03): 127301
[5] JIAO Bo, YAO Li-Juan, WU Chun-Fang, DONG Hua, HOU Xun, WU Zhao-Xin. Room-Temperature Organic Negative Differential Resistance Device Using CdSe Quantum Dots as the ITO Modification Layer[J]. Chin. Phys. Lett., 2015, 32(11): 127301
[6] ZHAO Shun-Cai, ZHANG Shuang-Ying, WU Qi-Xuan, JIA Jing. Left-Handedness with Three Zero-Absorption Windows Tuned by the Incoherent Pumping Field and Inter-Dot Tunnelings in a GaAs/AlGaAs Triple Quantum Dots System[J]. Chin. Phys. Lett., 2015, 32(5): 127301
[7] LI Jian, ZHANG Dong. Single- and Few-Electron States in Deformed Topological Insulator Quantum Dots[J]. Chin. Phys. Lett., 2015, 32(4): 127301
[8] JEONG Heejun. Current Fluctuations in a Semiconductor Quantum Dot with Large Energy Spacing[J]. Chin. Phys. Lett., 2014, 31(12): 127301
[9] LI Bo-Xin, ZHENG Jun, CHI Feng. Rectification Effect of the Heat Generation by Electric Current in a Quantum Dot Molecular[J]. Chin. Phys. Lett., 2014, 31(05): 127301
[10] LV Xue-Qin, JIN Peng, CHEN Hong-Mei, WU Yan-Hua, WANG Fei-Fei, WANG Zhan-Guo. Broadband Light Emission from Chirped Multiple InAs Quantum Dot Structure[J]. Chin. Phys. Lett., 2013, 30(11): 127301
[11] A. Azhagu Parvathi, A. John Peter, Chang Kyoo Yoo. Nonlinear Optical Properties in a Quantum Dot of Some Polar Semiconductors[J]. Chin. Phys. Lett., 2013, 30(10): 127301
[12] LI Zhen-Shan, PAN Hui, LÜ Rong. Spin-Polarized Currents in Double Quantum Dots with Rashba Spin-Orbit Interactions[J]. Chin. Phys. Lett., 2013, 30(8): 127301
[13] YU Hong-Yi, LUO Yu, YAO Wang . The Nuclear Dark State under Dynamical Nuclear Polarization[J]. Chin. Phys. Lett., 2013, 30(7): 127301
[14] QIAN Xin-Ye, CHEN Kun-Ji, HUANG Jian, WANG Yue-Fei, FANG Zhong-Hui, XU Jun, HUANG Xin-Fan . Room-Temperature Multi-Peak NDR in nc-Si Quantum-Dot Stacking MOS Structures for Multiple Value Memory and Logic[J]. Chin. Phys. Lett., 2013, 30(7): 127301
[15] SHI Yong, MA Zhong-Yuan, CHEN Kun-Ji, JIANG Xiao-Fan, LI Wei, HUANG Xin-Fan, XU Ling, XU Jun, FENG Duan . The Effect of Multiple Interface States and nc-Si Dots in a Nc-Si Floating Gate MOS Structure Measured by their GV Characteristics[J]. Chin. Phys. Lett., 2013, 30(7): 127301
Viewed
Full text


Abstract