CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Fano Effect and Spin-Polarized Transport in a Triple-Quantum-Dot Interferometer Attached to Two Ferromagnetic Leads |
Jiyuan Bai1, Kongfa Chen2*, Pengyu Ren1, Jianghua Li1, Zelong He1*, and Li Li3 |
1School of Electronic and Information Engineering, Yangtze Normal University, Chongqing 408003, China 2College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China 3Key Lab of In-fiber Integrated Optics of Ministry of Education, College of Science, Harbin Engineering University, Harbin 150001, China
|
|
Cite this article: |
Jiyuan Bai, Kongfa Chen, Pengyu Ren et al 2020 Chin. Phys. Lett. 37 127301 |
|
|
Abstract We report the conductance and average current through a triple-quantum-dot interferometer coupled with two ferromagnetic leads using the nonequilibrium Green's function. The results show that the interference between the resonant process and the non-resonant process leads to the formation of Fano resonance. More Fano resonances can be observed by applying a time-dependent external field. As a Zeeman magnetic field is applied, the spin-up electron transport is depressed in a certain range of electron energy levels. A spin-polarized pulse device can be realized by adjusting the spin polarization parameters of ferromagnetic leads. Moreover, the $I$–$V$ characteristic curves show that under the influence of Fano resonance, the spin polarization is significantly enhanced by applying a relatively large reverse bias voltage. These results strongly suggest that the spin-polarized pulse device can be potentially applied as a spin-dependent quantum device.
|
|
Received: 07 August 2020
Published: 08 December 2020
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11447132), the “Chunhui Plan” Cooperative Scientific Research Project of China (Grant No. 6101020101), and the Science and Technology Research Program of Chongqing Education Commission of China (Grant No. KJQN201801402). |
|
|
[1] | Elzerman J M, Hanson R, van Willems B L H, Witkamp B, Vandersypen L M K and Kouwenhoven L P 2004 Nature 430 431 |
[2] | Kiyama H, Nakajima T, Teraoka S, Oiwa A and Tarucha S 2015 Phys. Rev. B 91 155302 |
[3] | Kaasbjerg K and Jauho A P 2016 Phys. Rev. Lett. 116 196801 |
[4] | Zhao X, Yuan R Y, Ji A C, Yan H and Guo Y 2014 J. Appl. Phys. 116 103517 |
[5] | Zhao H K and Zou W K 2015 Phys. Lett. A 379 389 |
[6] | Ma Z S, Zhu Y, Li X Q, Lin T H and Su Z B 2004 Phys. Rev. B 69 045302 |
[7] | Gong W J, Zheng Y S, Liu Y and Lü T Q 2006 Phys. Rev. B 73 245329 |
[8] | An X T, Mu H Y, Xian L F and Liu J J 2012 Chin. Phys. B 21 077201 |
[9] | Bao X L, He Z L and Chen K F 2020 Indian J. Phys. (in press) |
[10] | Wu S Q, Wand S J, Sun W L and Yu W L 2003 Phys. Lett. A 307 60 |
[11] | Li Y X 2007 J. Phys.: Condens. Matter 19 496219 |
[12] | Zhao H K, Wang J and Wang Q 2014 Phys. Lett. A 378 1553 |
[13] | Zhang L L, Zhan G H, Li Z Z and Gong W J 2017 Phys. Rev. A 96 062133 |
[14] | He Z L, Lü T Q, Cui L, Xue H J, Li L J and Yin H T 2011 Chin. Phys. B 20 117303 |
[15] | He Z L, Lü T Q, Li H, Li L J, Cui L and Xue H J 2011 Phys. Scr. 84 035703 |
[16] | He Z L, Li Q, Chen K F, Bai J Y and Dang S H 2018 Chin. Phys. Lett. 35 097301 |
[17] | Ma J M, Zhao J, Zhang K C, Peng Y J and Chi F 2011 Nanoscale Res. Lett. 6 256 |
[18] | Kondo K 2016 New J. Phys. 18 013002 |
[19] | Zhang X G and Xiang T 2012 Int. J. Quantum Chem. 112 28 |
[20] | An X T, Mu H Y, Li Y X and Liu J J 2011 Phys. Lett. A 375 4078 |
[21] | Yang X, Zheng J, Chi F and Guo Y 2015 Appl. Phys. Lett. 106 193107 |
[22] | Li J L and Li Y X 2010 Chin. Phys. Lett. 27 057202 |
[23] | He Z L and Lü T Q 2012 Phys. Lett. A 376 2501 |
[24] | Sun Q F, Wang J and Guo H 2005 Phys. Rev. B 71 165310 |
[25] | Yin H T, Lü T Q, Liu X J and Xue H J 2009 Chin. Phys. Lett. 26 047302 |
[26] | Bai J Y, He Z L and Yang S B 2014 Acta Phys. Sin. 63 017303 (in Chinese) |
[27] | Ellenberger C, Ihn T, Yannouleas C, Landman U, Ensslin K, Driscoll D and Gossard A C 2006 Phys. Rev. Lett. 96 126806 |
[28] | Fu H H and Yao K L 2012 Appl. Phys. Lett. 100 013502 |
[29] | Fu H H and Yao K L 2012 J. Appl. Phys. 111 094512 |
[30] | He Z L, Bai J Y, Ye S J, Li L and Li C X 2017 Chin. Phys. Lett. 34 087301 |
[31] | Bociana K and Rudzinski W 2013 Eur. Phys. J. B 86 439 |
[32] | Trocha P and Weymann I 2015 Phys. Rev. B 91 235424 |
[33] | Wingreen N S, Jacobsen K W and Wilkins J W 1989 Phys. Rev. B 40 11834 |
[34] | Jauho A P, Wingreen N S and Meir Y 1994 Phys. Rev. B 50 5528 |
[35] | Shangguan W Z, Au Y T C, Yu Y B and Kam C H 2001 Phys. Rev. B 63 235323 |
[36] | de Ladrón G M L and Orellana P A 2006 Phys. Rev. B 73 205303 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|