ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Observation of Cesium ($nD_{5/2}$+$6S_{1/2}$) Ultralong-Range Rydberg-Ground Molecules |
Su-Ying Bai1, Jing-Xu Bai1, Xiao-Xuan Han1, Yue-Chun Jiao1,2, Jian-Ming Zhao1,2*, and Suo-Tang Jia1,2 |
1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
|
|
Cite this article: |
Su-Ying Bai, Jing-Xu Bai, Xiao-Xuan Han et al 2020 Chin. Phys. Lett. 37 123201 |
|
|
Abstract Ultralong-range Cs$_2$ Rydberg-ground molecules ($nD_{5/2} + 6S_{1/2}F$) ($33 \leq n \leq 39$, $F=3$ or 4) are investigated by a two-photon photo-association spectroscopy of an ultracold Cs gas. Two vibrational ground molecular spectra of triplet $^{3}\!\varSigma$ and hyperfine mixed singlet-triplet $^{1,3}\!\varSigma$ molecular states and their corresponding binding energies are attained. The experimental observations are simulated by an effective Hamiltonian including low energy electron scattering pseudopotentials, the spin-orbit interaction of the Rydberg atom, and the hyperfine interaction of the ground-state atom. The zero-energy singlet and triplet s-wave scattering lengths are extracted by comparing the experimental observations and calculations. Dependences of the measured binding energies on the effective principal quantum number, $n_{\rm eff} = n - \delta_D$ ($\delta_D$ is the quantum defect of Rydberg $D$ state), yield the scaling of $n_{\rm eff}^{-5.60 \pm 0.16}(^{3}\!\varSigma,F=3)$, $n_{\rm eff}^{-5.62 \pm 0.16}(^{3}\!\varSigma,F=4)$ for deep triplet potential and $n_{\rm eff}^{-5.65 \pm 0.38}(^{1,3}\!\varSigma, F=3)$, $n_{\rm eff}^{-6.19 \pm 0.14}(^{1,3}\!\varSigma,F=4)$ for shallow mixed singlet-triplet potential well. The simulations of low-energy Rydberg electron scattering show agreement well with the experimental measurements.
|
|
Received: 14 September 2020
Published: 08 December 2020
|
|
|
|
Fund: Supported by the National Key R&D Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 11434007, 61835007, 61675123, 61775124, and 11904215), Changjiang Scholars and Innovative Research Team in Universities of Ministry of Education of China (Grant No. IRT 17R70), and the 1331 Project. |
|
|
[1] | Greene C H, Dickinson A S and Sadeghpour H R 2000 Phys. Rev. Lett. 85 2458 |
[2] | Booth D, Rittenhouse S T, Yang J, Sadeghpour H R and Shaffer J P 2015 Science 348 99 |
[3] | Fermi E 1934 Nuovo Cimento 11 157 |
[4] | Omont A 1977 J. Phys. France 38 1343 |
[5] | Hamilton E L, Greene C H and Sadeghpour H R 2002 J. Phys. B: At. Mol. Opt. Phys. 35 L199 |
[6] | Chibisov M I, Khuskivadze A A and Fabrikant I I 2002 J. Phys. B: At. Mol. Opt. Phys. 35 L193 |
[7] | Bendkowsky V, Butscher V, Nipper J, Shaffer J P, Löw R and Pfau T 2009 Nature 458 1005 |
[8] | Bellos M A, Carollo R, Banerjee J, Eyler E E, Gould P L and Stwalley W C 2013 Phys. Rev. Lett. 111 053001 |
[9] | Anderson D A, Miller S A and Raithel G 2014 Phys. Rev. Lett. 112 163201 |
[10] | Krupp A T, Gaj A, Balewski J B, Ilzhöfer P, Hofferberth S, Löw R, Pfau T, Kurz M and Schmelcher P 2014 Phys. Rev. Lett. 112 143008 |
[11] | Maclennan J L, Chen Y J and Raithel G 2019 Phys. Rev. A 99 033407 |
[12] | Tallant J, Rittenhouse S T, Booth D, Sadeghpour H R and Shaffer J P 2012 Phys. Rev. Lett. 109 173202 |
[13] | Saßmannshausen H, Merkt F and Deiglmayr J 2015 Phys. Rev. Lett. 114 133201 |
[14] | Fey C, Yang J, Rittenhouse S T, Munkes F, Baluktsian M, Schmelcher P, Sadeghpour H R and Shaffer J P 2019 Phys. Rev. Lett. 122 103001 |
[15] | Bai S, Han X, Bai J, Jiao Y, Wang H, Zhao J and Jia S 2020 J. Chem. Phys. 152 084302 |
[16] | Peper M and Deiglmayr J 2020 J. Phys. B: At. Mol. Opt. Phys. 53 064001 |
[17] | Reinhold E and Ubachs W 2005 Mol. Phys. 103 1329 |
[18] | Weimer H, Müller M, Lesanovsky I, Zoller P and Büchler H P 2010 Nat. Phys. 6 382 |
[19] | Lukin M D, Fleischhauer M, Cote R, Duan L M, Jaksch D, Cirac J I and Zoller P 2001 Phys. Rev. Lett. 87 037901 |
[20] | DeMille D 2002 Phys. Rev. Lett. 88 067901 |
[21] | Rabl P, DeMille D, Doyle J M, Lukin M D, Schoelkopf R J and Zoller P 2006 Phys. Rev. Lett. 97 033003 |
[22] | Anderson D A, Miller S A and Raithel G 2014 Phys. Rev. A 90 062518 |
[23] | Han X X, Bai S Y, Jiao Y C, Hao L P, Xue Y M, Zhao J M, Jia S T and Raithel G 2018 Phys. Rev. A 97 031403(R) |
[24] | Khuskivadze A A, Chibisov M I and Fabrikant I I 2002 Phys. Rev. A 66 042709 |
[25] | DeSalvo B J, Aman J A, Dunning F B, Killian T C, Sadeghpour H R, Yoshida S and Burgdörfer J 2015 Phys. Rev. A 92 031403(R) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|