Chin. Phys. Lett.  2020, Vol. 37 Issue (12): 121201    DOI: 10.1088/0256-307X/37/12/121201
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Impressions of the Continuum Bound State Problem in QCD
Si-Xue Qin1* and C. D. Roberts2,3*
1Department of Physics, Chongqing University, Chongqing 401331, China
2School of Physics, Nanjing University, Nanjing 210093, China
3Institute for Nonperturbative Physics, Nanjing University, Nanjing 210093, China
Cite this article:   
Si-Xue Qin and C. D. Roberts 2020 Chin. Phys. Lett. 37 121201
Download: PDF(928KB)   PDF(mobile)(893KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Modern and anticipated facilities will deliver data that promises to reveal the innermost workings of quantum chromodynamics (QCD). In order to fulfill that promise, phenomenology and theory must reach a new level, limiting and overcoming model-dependence, so that clean lines can be drawn to connect the data with QCD itself. Progress in that direction, made using continuum methods for the hadron bound-state problem, is sketched herein.
Received: 15 August 2020      Published: 08 December 2020
PACS:  12.38.Lg (Other nonperturbative calculations)  
  11.10.St (Bound and unstable states; Bethe-Salpeter equations)  
  11.30.Rd (Chiral symmetries)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11805024 and 11947406), and Jiangsu Province Hundred Talents Plan for Professionals.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/12/121201       OR      https://cpl.iphy.ac.cn/Y2020/V37/I12/121201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Si-Xue Qin and C. D. Roberts
[1] Marciano W J and Pagels H 1978 Phys. Rep. 36 137
[2] Wilson K G 1974 Phys. Rev. D 10 2445
[3] Bali G S et al. 2016 J. High Energy Phys. 2016(02) 070
[4] Mezrag C, Segovia J, Chang L and Roberts C D 2018 Phys. Lett. B 783 263
[5] Bali G S et al. 2019 Eur. Phys. J. A 55 116
[6] Pagels H 1973 Phys. Rev. D 7 3689
[7] Lane K D 1974 Phys. Rev. D 10 2605
[8] Politzer H D 1976 Nucl. Phys. B 117 397
[9] Pagels H 1979 Phys. Rev. D 19 3080
[10] Delbourgo R and Scadron M D 1979 J. Phys. G 5 1621
[11] Roberts C D and Williams A G 1994 Prog. Part. Nucl. Phys. 33 477
[12] Munczek H J 1995 Phys. Rev. D 52 4736
[13] Bender A, Roberts C D and von Smekal L 1996 Phys. Lett. B 380 7
[14] Ward J C 1950 Phys. Rev. 78 182
[15] Green H S 1953 Proc. Phys. Soc. A 66 873
[16] Takahashi Y 1957 Nuovo Cimento 6 371
[17] Maris P and Roberts C D 2003 Int. J. Mod. Phys. E 12 297
[18]Chang L, Roberts C D and Tandy P C 2011 Chin. J. Phys. 49 955
[19] Chang L, Cloet I C, Cobos-Martinez J J, Roberts C D, Schmidt S M and Tandy P C 2013 Phys. Rev. Lett. 110 132001
[20] Chang L, Roberts C D and Schmidt S M 2013 Phys. Lett. B 727 255
[21] Qin S X, Roberts C D and Schmidt S M 2014 Phys. Lett. B 733 202
[22] Mezrag C, Chang L, Moutarde H, Roberts C D, Rodríguez-Quintero J and Schmidt S M 2015 Phys. Lett. B 741 190
[23] Raya K, Chang L, Bashir A, Cobos-Martinez J J, Gutiérrez-Guerrero L X, Roberts C D and Tandy P C 2016 Phys. Rev. D 93 074017
[24] Horn T and Roberts C D 2016 J. Phys. G 43 073001
[25] Li B L et al. 2016 Phys. Rev. D 93 114033
[26] Binosi D, Chang L, Qin S X, Papavassiliou J and Roberts C D 2016 Phys. Rev. D 93 096010
[27] Roberts C D and Schmidt S M 2020 arXiv:2006.08782[hep-ph]
[28] Qin S X, Chang L, Liu Y X, Roberts C D, Wilson D J 2011 Phys. Rev. C 84 042202(R)
[29] Qin S X, Chang L, Liu Y X, Roberts C D and Wilson D J 2012 Phys. Rev. C 85 035202
[30] Qin S X, Roberts C D and Schmidt S M 2018 Phys. Rev. D 97 114017
[31] Qin S X, Roberts C D and Schmidt S M 2019 Few-Body Syst. 60 26
[32] Aguilar A C, Binosi D and Papavassiliou J 2016 Front. Phys. Chin. 11 111203
[33] Cui Z F, Zhang J L, Binosi D, de Soto F, Mezrag C, Papavassiliou J, Roberts C D, Rodríguez-Quintero J, Segovia J and Zafeiropoulos S 2020 Chin. Phys. C 44 083102
[34] Zyla P A et al. 2020 Prog. Theor. Exp. Phys. 2020 083C01
[35] Chang L and Roberts C D 2009 Phys. Rev. Lett. 103 081601
[36] Chang L, Liu Y X and Roberts C D 2011 Phys. Rev. Lett. 106 072001
[37] Chang L and Roberts C D 2012 Phys. Rev. C 85 052201(R)
[38] Williams R, Fischer C S, Heupel W 2016 Phys. Rev. D 93 034026
[39] Qin S X 2016 Few-Body Syst. 57 1059
[40] Ding M et al. 2019 Phys. Rev. D 99 014014
[41] Binosi D, Chang L, Papavassiliou J, Qin S X and Roberts C D 2017 Phys. Rev. D 95 031501(R)
[42] Binosi D, Chang L, Papavassiliou J and Roberts C D 2015 Phys. Lett. B 742 183
[43] Roberts C D 1996 Nucl. Phys. A 605 475
[44] Maris P and Tandy P C 2000 Phys. Rev. C 62 055204
[45] Volmer J et al. 2001 Phys. Rev. Lett. 86 1713
[46] Maris P and Roberts C D 1997 Phys. Rev. C 56 3369
[47] Windisch A 2017 Phys. Rev. C 95 045204
[48] Chang L, Cloet I C, Roberts C D, Schmidt S M and Tandy P C 2013 Phys. Rev. Lett. 111 141802
[49] Nakanishi N 1969 Prog. Theor. Phys. Suppl. 43 1
[50]Denisov O et al. Letter of Intent (Draft 2.0): A New QCD Facility at the M2 Beam Line of the CERN SPS.
[51] Aguilar A C et al. 2019 Eur. Phys. J. A 55 190
[52]Cao X et al. 2020 Nucl. Tech. 43 020001
[53] Chen X, Guo F K, Roberts C D and Wang R 2020 arXiv:2008.00102[hep-ph]
[54] Ding M, Gao F, Chang L, Liu Y X and Roberts C D 2016 Phys. Lett. B 753 330
[55] Raya K, Ding M, Bashir A, Chang L and Roberts C D 2017 Phys. Rev. D 95 074014
[56] Gao F, Chang L, Liu Y X, Roberts C D and Tandy P C 2017 Phys. Rev. D 96 034024
[57] Chen M, Ding M, Chang L and Roberts C D 2018 Phys. Rev. D 98 091505(R)
[58] Schlessinger L and Schwartz C 1966 Phys. Rev. Lett. 16 1173
[59] Schlessinger L 1968 Phys. Rev. 167 1411
[60] Tripolt R A, Haritan I, Wambach J and Moiseyev N 2017 Phys. Lett. B 774 411
[61] Chen C et al. 2019 Phys. Rev. D 99 034013
[62] Binosi D et al. 2019 Phys. Lett. B 790 257
[63] Binosi D and Tripolt R A 2020 Phys. Lett. B 801 135171
[64] Xu Y Z et al. 2019 Phys. Rev. D 100 114038
[65] Yao Z Q, Binosi D, Cui Z F, Roberts C D, Xu S S and Zong H S 2020 Phys. Rev. D 102 014007
[66] Ablikim M et al. 2019 Phys. Rev. Lett. 122 061801
[67] Ablikim M et al. 2015 Phys. Rev. D 92 072012
[68] Hecht M B, Roberts C D and Schmidt S M 2001 Phys. Rev. C 63 025213
[69] Ding M et al. 2020 Chin. Phys. C 44 031002
[70] Ding M et al. 2020 Phys. Rev. D 101 054014
[71] Cui Z F, Ding M, Gao F, Raya K, Binosi D, Chang L, Roberts C D, Rodríguez-Quintero J and Schmidt S M 2020 arXiv:2006.14075[hep-ph]
[72] Cahill R T, Roberts C D and Praschifka J 1989 Aust. J. Phys. 42 129
[73] Burden C J, Cahill R T and Praschifka J 1989 Aust. J. Phys. 42 147
[74] Cahill R T 1989 Aust. J. Phys. 42 171
[75] Reinhardt H 1990 Phys. Lett. B 244 316
[76] Efimov G V, Ivanov M A and Lyubovitskij V E 1990 Z. Phys. C 47 583
[77] Eichmann G, Sanchis-Alepuz H, Williams R, Alkofer R and Fischer C S 2016 Prog. Part. Nucl. Phys. 91 1
[78] Wang Q W, Qin S X, Roberts C D and Schmidt S M 2018 Phys. Rev. D 98 054019
[79] Durr S et al. 2008 Science 322 1224
[80] Eichmann G 2011 Phys. Rev. D 84 014014
[81] Gilfoyle G 2018 EPJ Web Conf. 172 02004
[82] Wojtsekhowski B 2020 arXiv:2001.02190 [nucl-ex]
[83] Kelly J J 2004 Phys. Rev. C 70 068202
[84] Hecht M B, Roberts C D, Oettel M, Thomas A W, Schmidt S M and Tandy P C 2002 Phys. Rev. C 65 055204
[85] Burkert V D and Roberts C D 2019 Rev. Mod. Phys. 91 011003
[86] Chen X, Ping J, Roberts C D and Segovia J 2018 Phys. Rev. D 97 094016
[87] Williams R 2019 Phys. Lett. B 798 134943
[88] Lu Y, Chen C, Cui Z F, Roberts C D, Schmidt S M, Segovia J and Zong H S 2019 Phys. Rev. D 100 034001
[89]Brodsky S J et al. 2020 Int. J. Mod. Phys. E (in press)
[90]Barabanov M Y et al. Diquark Correlations in Hadron Physics: Origin, Impact and Evidence (in progress)
[91] Fischer C S 2019 Prog. Part. Nucl. Phys. 105 1
[92] Gao F and Pawlowski J M 2020 Phys. Rev. D 102 034027
[93] Raya K, Bashir A and Roig P 2020 Phys. Rev. D 101 074021
[94] Eichmann G, Fischer C S and Williams R 2020 Phys. Rev. D 101 054015
[95] Xu S S et al. 2019 Eur. Phys. J. A 55 113
[96] Souza E V et al. 2020 Eur. Phys. J. A 56 25
[97] Lucha W, Melikhov D and Sazdjian H 2019 Phys. Rev. D 100 074029
[98] Kaptari L P and Kämpfer B 2020 Few-Body Syst. 61 28
[99] Wallbott P C, Eichmann G and Fischer C S 2020 arXiv:2003.12407[hep-ph]
[100] Huber M Q, Fischer C S and Sanchis-Alepuz H 2020 arXiv:2004.00415[hep-ph]
Related articles from Frontiers Journals
[1] Hua-Xing Chen, Niu Su, and Shi-Lin Zhu. QCD Axial Anomaly Enhances the $\eta \eta^\prime$ Decay of the Hybrid Candidate $\eta_1(1855)$[J]. Chin. Phys. Lett., 2022, 39(5): 121201
[2] Si-Xue Qin and Craig D. Roberts. Resolving the Bethe–Salpeter Kernel[J]. Chin. Phys. Lett., 2021, 38(7): 121201
[3] Hua-Xing Chen, Wei Chen, Rui-Rui Dong, and Niu Su. $X_0(2900)$ and $X_1(2900)$: Hadronic Molecules or Compact Tetraquarks[J]. Chin. Phys. Lett., 2020, 37(10): 121201
[4] DING Jing-Zhi, JIN Hong-Ying. Quark and Gluon Condensates at Finite Temperatures by the Linear Sigma Model Approach[J]. Chin. Phys. Lett., 2014, 31(08): 121201
[5] ZHANG Zhu-Feng, JIN Hong-Ying, T. G. Steele. Revisiting 1?+ Light Hybrid from Monte-Carlo Based QCD Sum Rules[J]. Chin. Phys. Lett., 2014, 31(05): 121201
[6] MO Xin, LIU Jue-Ping. The Scalar Photon Light-Cone Distribution Amplitude in the Instanton Vacuum Model of QCD[J]. Chin. Phys. Lett., 2014, 31(04): 121201
[7] LU Chang-Fang, LÜ Xiao-Fu. Influence of Quark Current Mass on Quark Condensate at Finite Temperature[J]. Chin. Phys. Lett., 2013, 30(9): 121201
[8] LI Hua, LUO Xin-Lian, JIANG Yu, ZONG Hong-Shi, **. The Renormalized Equation of State and Quark Star[J]. Chin. Phys. Lett., 2010, 27(12): 121201
[9] GUO Xiao-Bo, TAO Jun, LI Lei, WANG Shun-Jin,. Light Flavor Vector and Pseudo Vector Mesons from a Light-Cone QCD Inspired Effective Hamiltonian Model with SU(3) Flavor Mixing Interactions[J]. Chin. Phys. Lett., 2010, 27(6): 121201
[10] GUO Xiao-Bo, TAO Jun, LI Lei, ZHOU Shan-Gui, WANG Shun-Jin,. A Light-Cone QCD Inspired Effective Hamiltonian Model with SU(3) Flavor Mixing[J]. Chin. Phys. Lett., 2009, 26(4): 121201
[11] WANG Zhi-Gang. Reanalysis of the (0+,1+) States Bs0 and Bs1 with QCD Sum Rules[J]. Chin. Phys. Lett., 2008, 25(11): 121201
[12] HUANG Tao, ZUO Fen. Remarks on Two-Dimensional Power Correction in Soft Wall Model[J]. Chin. Phys. Lett., 2008, 25(10): 121201
[13] TAO Jun, LI Lei, ZHOU Shan-Gui, WANG Shun-Jin. A Light-Cone QCD Inspired Effective Hamiltonian Model for Pseudoscalar and Scalar Mesons[J]. Chin. Phys. Lett., 2008, 25(9): 121201
[14] JIN Hong-Ying, LIU Shao-Min, ZHANG Zhu-Feng, LI Xue-Qian. Chiral Suppression and SU(3) Symmetry in Scalar Glueball Decays[J]. Chin. Phys. Lett., 2008, 25(5): 121201
[15] ZHANG Ying, WANG Qing. Gauge Covariant Fermion Propagator in the Presence of Arbitrary External Gauge Field and Its Schwinger--Dyson Equation[J]. Chin. Phys. Lett., 2008, 25(4): 121201
Viewed
Full text


Abstract