Chin. Phys. Lett.  2020, Vol. 37 Issue (12): 120502    DOI: 10.1088/0256-307X/37/12/120502
GENERAL |
Three-Terminal Thermionic Heat Engine Based on Semiconductor Heterostructures
Yun-Yun Yang , Shuai Xu , and Ji-Zhou He*
Department of Physics, Nanchang University, Nanchang 330031, China
Cite this article:   
Yun-Yun Yang , Shuai Xu , and Ji-Zhou He 2020 Chin. Phys. Lett. 37 120502
Download: PDF(1211KB)   PDF(mobile)(1205KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a model for three-terminal thermionic heat engines based on semiconductor heterostructures. According to electron transport theory, we drive the formulas for the charge current and energy current flowing from the electron reservoir and we then obtain the power output and efficiency in the linear and nonlinear regimes. Furthermore, we analyze the performance characteristic of the thermionic heat engine and get the maximum power output by optimizing the performance parameters. Finally, we optimize the thermodynamic performance of the thermionic heat engine by maximizing the product of the power output and efficiency.
Received: 15 September 2020      Published: 08 December 2020
PACS:  05.70.-a (Thermodynamics)  
  73.50.Lw (Thermoelectric effects)  
  73.63.Hs (Quantum wells)  
  85.80.Fi (Thermoelectric devices)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11875034).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/12/120502       OR      https://cpl.iphy.ac.cn/Y2020/V37/I12/120502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yun-Yun Yang 
Shuai Xu 
and Ji-Zhou He
[1] Esposito M, Kawai R, Lindenberg K and Van D B C 2010 Phys. Rev. E 81 041106
[2] Esposito M, Kumar N, Lindenberg K and Van D B C 2012 Phys. Rev. E 85 031117
[3] Li W, Fu J, Yang Y Y and He J Z 2019 Acta Phys. Sin. 68 220501 (in Chinese)
[4] Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard I W A and Heath J R 2008 Nature 451 168
[5] Yang Y Y, Xu S, Li W and He J Z 2020 Phys. Scr. 95 095001
[6] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 12727
[7] Hicks L D, Harman T C and Dresselhaus M S 1993 Appl. Phys. Lett. 63 3230
[8] Venkatasubramanian R, Siivola E, Colpittes T and O'Quinn B 2001 Nature 413 597
[9] Edwards H L, Niu Q and De L A L 1993 Appl. Phys. Lett. 63 1815
[10] Edwards H L, Niu Q, Georgakis G A and De L A L 1995 Phys. Rev. B 52 5714
[11] Jordan A N, Sothmann B, Sánchez R and Büttiker M 2013 Phys. Rev. B 87 075312
[12] Sothmann B, Sánchez R, Jordan A N and Büttiker M 2013 New J. Phys. 15 095021
[13] Lin Z B, Li W, Fu J, Yang Y Y and He J Z 2019 Chin. Phys. Lett. 36 060501
[14] Lin Z B, Yang Y Y, Li W, Wang J H and He J Z 2020 Phys. Rev. E 101 022117
[15] Choi Y and Jordan A N 2015 Physica E 74 465
[16] Jiang J H, Entin-Wohlman O and Imry Y 2012 Phys. Rev. B 85 075412
[17] Jiang J H, Entin-Wohlman O and Imry Y 2013 New J. Phys. 15 075021
[18] Su G Z, Pan Y Z, Zhang Y C, Shih T M and Chen J C 2016 Energy 113 723
[19] Peng W L, Ye Z L, Zhang X and Chen J C 2018 Energy Convers. Manage. 166 74
[20] Qiu S S, Ding Z M, Chen L, Meng F K and Sun F R 2019 Eur. Phys. J. Plus 134 273
[21] Ding Z M, Chen L G, Ge Y L and Xie Z H 2019 Mach. Learn.: Sci. Technol. 62 397
[22] Shi Z C, Fu J, Qin W F and He J Z 2017 Chin. Phys. Lett. 34 110501
[23] Li W, Yang Y Y, Fu J and He J Z 2020 ES Energy & Environ. 7 40
[24] Shakouri A and Bowers J E 1997 Appl. Phys. Lett. 71 1234
[25] Mahan G D, Sofo J O and Bartkowiak M 1998 J. Appl. Phys. 83 4683
[26] Mahan G D and Woods L M 1998 Phys. Rev. Lett. 80 4016
[27] Vining C B and Mahan G D 1999 J. Appl. Phys. 86 6852
[28] Ulrich M D, Barnes P A and Vining C B 2001 J. Appl. Phys. 90 1625
[29] Zebarjadi M 2017 Phys. Rev. Appl. 8 014008
[30] Chen C C, Li Z, Shi L and Cronin S B 2015 Nano Res. 8 666
[31] Wang X, Zebarjadi M and Esfarjani K 2016 Nanoscale 8 14695
[32] Liang S J, Liu B, Hu W, Zhou K and Ang L K 2017 Sci. Rep. 7 46211
[33] Wang X, Zebarjadi M and Esfarjani K 2018 Sci. Rep. 8 9303
[34] Humphrey T E, O'Dwyer M F and Linke H 2005 J. Phys. D 38 2051
[35] Vashaee D and Shakouri A 2004 J. Appl. Phys. 95 1233
[36] Luo X G, He J Z, Long K L, Wang J, Liu N and Qiu T 2014 J. Appl. Phys. 115 244306
[37] Nakpathomkun N, Xu H Q and Linke H 2010 Phys. Rev. B 82 235428
[38]Ferry D and Goodnick S M 1999 Transport in Nanostructures (Cambridge: Cambridge University Press)
[39] Yuan Y, Wang R, He J Z, Ma Y L and Wang J H 2014 Phys. Rev. E 90 052151
[40] De T C, Hernández A C and Roco J M M 2012 Phys. Rev. E 85 010104
[41] De T C, Roco J M M, Hernández A C, Wang Y and Tu Z C 2013 Phys. Rev. E 87 012105
[42] Wang Y, Li M, Tu Z C, Hernández A C and Roco J M M 2012 Phys. Rev. E 86 011127
Related articles from Frontiers Journals
[1] Lingxiao Wang, Yin Jiang, Lianyi He, and Kai Zhou. Continuous-Mixture Autoregressive Networks Learning the Kosterlitz–Thouless Transition[J]. Chin. Phys. Lett., 2022, 39(12): 120502
[2] Sizhuo Yu, Yuan Gao, Bin-Bin Chen, and Wei Li. Learning the Effective Spin Hamiltonian of a Quantum Magnet[J]. Chin. Phys. Lett., 2021, 38(9): 120502
[3] Ying Li and Jiaxin Li. Advection and Thermal Diode[J]. Chin. Phys. Lett., 2021, 38(3): 120502
[4] Yong Gao. Ellipsoidal Thermal Concentrator and Cloak with Transformation Media[J]. Chin. Phys. Lett., 2021, 38(2): 120502
[5] Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Moderate-Temperature Near-Field Thermophotovoltaic Systems with Thin-Film InSb Cells[J]. Chin. Phys. Lett., 2021, 38(2): 120502
[6] Liu-Jun Xu and Ji-Ping Huang. Active Thermal Wave Cloak[J]. Chin. Phys. Lett., 2020, 37(12): 120502
[7] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 120502
[8] Liujun Xu and Jiping Huang. Negative Thermal Transport in Conduction and Advection[J]. Chin. Phys. Lett., 2020, 37(8): 120502
[9] Ze-Bin Lin, Wei Li, Jing Fu, Yun-Yun Yang, Ji-Zhou He. A Three-Terminal Quantum Well Heat Engine with Heat Leakage[J]. Chin. Phys. Lett., 2019, 36(6): 120502
[10] Jia Li, Zhao-Liang Wang, Gui-Ce Yao. Reconstruction of Intrinsic Thermal Parameters of Methane Hydrate and Thermal Contact Resistance by Freestanding 3$\omega$ Method[J]. Chin. Phys. Lett., 2018, 35(7): 120502
[11] Run Hu, Jin-Yan Hu, Rui-Kang Wu, Bin Xie, Xing-Jian Yu, Xiao-Bing Luo. Examination of the Thermal Cloaking Effectiveness with Layered Engineering Materials[J]. Chin. Phys. Lett., 2016, 33(04): 120502
[12] RAO Zhong-Hao, LIU Xin-Jian, ZHANG Rui-Kai, LI Xiang, WEI Chang-Xing, WANG Hao-Dong, LI Yi-Min. A Comparative Study on the Self Diffusion of N-Octadecane with Crystal and Amorphous Structure by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2014, 31(1): 120502
[13] ZHANG Yan-Chao, HE Ji-Zhou. Efficiency at Maximum Power of a Quantum Dot Heat Engine in an External Magnetic Field[J]. Chin. Phys. Lett., 2013, 30(1): 120502
[14] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 120502
[15] LI Wei, Q. A. Wang, A. Le Mehaute. Maximum Path Information and Fokker--Planck Equation[J]. Chin. Phys. Lett., 2008, 25(4): 120502
Viewed
Full text


Abstract