Chin. Phys. Lett.  2020, Vol. 37 Issue (12): 120301    DOI: 10.1088/0256-307X/37/12/120301
GENERAL |
Long-Range Interaction Enhanced Adiabatic Quantum Computers
Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang*
School of Physics and Technology, Wuhan University, Wuhan 430072, China
Cite this article:   
Anqi Shi , Haoyu Guan , Jun Zhang  et al  2020 Chin. Phys. Lett. 37 120301
Download: PDF(1229KB)   PDF(mobile)(1412KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A quantum computer is not necessarily alone, e.g., thousands and millions of quantum computers are simultaneously working together for adiabatic quantum computers based on nuclear spins. Long-range interaction is inevitable between these nuclear spin qubits. Here we investigate the effect of long-range dipolar interaction between different adiabatic quantum computers. Our analytical and numerical results show that the dipolar interaction can enhance the final fidelity in adiabatic quantum computation for solving the factorization problem, when the overall interaction is negative. The enhancement will become more prominent if a single quantum computer encounters an extremely small energy gap which occurs more likely for larger-size systems.
Received: 17 September 2020      Published: 08 December 2020
PACS:  03.65.-w (Quantum mechanics)  
  03.67.-a (Quantum information)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. U1930201, 11574239 and 91836101).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/12/120301       OR      https://cpl.iphy.ac.cn/Y2020/V37/I12/120301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Anqi Shi 
Haoyu Guan 
Jun Zhang 
and Wenxian Zhang
[1] Stassi R, Cirio M and Nori F 2020 npj Quantum Inf. 6 67
[2] Wang B N, Hu F, Yao H N and Wang C 2020 Sci. Rep. 10 7106
[3] Bruzewicz C D, Chiaverini J, Mcconnell R and Sage J M 2019 Appl. Phys. Rev. 6 021314
[4] Grzesiak N, Blümel R, Beck K, Wright K, Chaplin V, Amini J M, Pisenti N C, Debnath S, Chen J S and Nam Y 2020 Nat. Commun. 11 2963
[5] Yang B Y and Yang L 2020 Sci. Chin. Inf. Sci. 63 202501
[6] Sheng C, He X D, Xu P, Guo R J, Wang K P, Xiong Z Y, Liu M, Wang J and Zhan M S 2018 Phys. Rev. Lett. 121 240501
[7] Qiang X G, Zhou X Q, Wang J W, Wilkes C M, Thomas L, O'Gara S, Laurent K, Marshall G D, Raffaele S and Ralph T C 2018 Nat. Photon. 12 534
[8] Ji W T, Zhang L, Wang M Q, Zhang L, Guo Y H, Chai Z H, Rong X, Shi F Z, Liu X J, Wang Y and Du J F 2020 Phys. Rev. Lett. 125 020504
[9] Zhang J F, Hegde S S and Suter D 2020 Phys. Rev. Lett. 125 030501
[10] Cui J Y, Li J, Liu X M, Peng X H and Fu R Q 2018 J. Magn. Reson. 294 83
[11] Xin T, Li Y S, Fan Y, Zhu X R, Zhang Y J, Nie X F, Li J, Liu Q H and Lu D W 2020 Phys. Rev. Lett. 125 090502
[12] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45
[13] Peng X H, Liao Z Y, Xu N Y, Qin G, Zhou X Y, Suter D and Du J F 2008 Phys. Rev. Lett. 101 220405
[14] Farhi E, Goldstone J, Gutmann S and Sipser M 2000 arXiv:quant-ph/0001106
[15] Kato T 1950 J. Phys. Soc. Jpn. 5 435
[16] Mizel A, Lidar D A and Mitchell M 2007 Phys. Rev. Lett. 99 070502
[17] Yu H Y, Huang Y L and Wu B 2018 Chin. Phys. Lett. 35 110303
[18] Xu N Y, Zhu J, Lu D W, Zhou X Y, Peng X H and Du J F 2012 Phys. Rev. Lett. 108 130501
[19] Wu B, Yu H Y and Wilczek F 2020 Phys. Rev. A 101 012318
[20] Peng W C, Wang B N, Hu F, Wang Y J, Fang X J, Chen X Y and Wang C 2019 Sci. Chin.-Phys. Mech. Astron. 62 1
[21] Childs A M, Farhi E and Preskill J 2001 Phys. Rev. A 65 012322
[22] Amin M H S 2008 Phys. Rev. Lett. 100 130503
[23] Rezakhani A T, Abasto D F, Lidar D A and Zanardi P 2010 Phys. Rev. A 82 012321
[24] Choi V 2010 arXiv:1004.2226v1 [quant-ph]
[25] Kay A 2015 Phys. Rev. A 92 062329
[26] Campbell S and Deffner S 2017 Phys. Rev. Lett. 118 100601
[27] Berry M V 2009 J. Phys. A 42 365303
[28] Mustafa D and Stuart A R 2008 J. Chem. Phys. 129 154111
[29] Orioli A, A P, S, Wildhagen H, Günter G, Berges J, Whitlock S and Weidemüller M 2018 Phys. Rev. Lett. 120 063601
[30] Witzel W M, Carroll M S, Cywiński L and Sarma S D 2012 Phys. Rev. B 86 035452
[31] Cywiński L, Witzel W M and Sarma S D 2009 Phys. Rev. Lett. 102 057601
[32]Klinowski J 2017 NMR of Solids 3rd edn (Oxford: Academic Press)
[33] Warren W S, Richter W, Andreotti A H and Farmer B T 1993 Science 262 2005
[34] Dobrovitski V V and De Raedt H A 2003 Phys. Rev. E 67 056702
[35] Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A and Preda D 2001 Science 292 472
[36] Shi A Q, Guan H Y and Zhang W X 2020 Phys. Lett. A 384 126745
[37] Choi V 2011 Proc. Natl. Acad. Sci. USA 108 E19–E20
Related articles from Frontiers Journals
[1] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 120301
[2] Haodong Wang, Peihan Lei, Xiaoyu Mao, Xi Kong, Xiangyu Ye, Pengfei Wang, Ya Wang, Xi Qin, Jan Meijer, Hualing Zeng, Fazhan Shi, and Jiangfeng Du. Magnetic Phase Transition in Two-Dimensional CrBr$_3$ Probed by a Quantum Sensor[J]. Chin. Phys. Lett., 2022, 39(4): 120301
[3] L. Jin. Unitary Scattering Protected by Pseudo-Hermiticity[J]. Chin. Phys. Lett., 2022, 39(3): 120301
[4] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 120301
[5] L. Jin and Z. Song. Symmetry-Protected Scattering in Non-Hermitian Linear Systems[J]. Chin. Phys. Lett., 2021, 38(2): 120301
[6] Peiran Yin, Xiaohui Luo, Liang Zhang, Shaochun Lin, Tian Tian, Rui Li, Zizhe Wang, Changkui Duan, Pu Huang, and Jiangfeng Du. Chiral State Conversion in a Levitated Micromechanical Oscillator with ${\boldsymbol In~Situ}$ Control of Parameter Loops[J]. Chin. Phys. Lett., 2020, 37(10): 120301
[7] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 120301
[8] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 120301
[9] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 120301
[10] Ming Zhang, Zairong Xi, Tzyh-Jong Tarn. Robust Set Stabilization and Its Instances for Open Quantum Systems[J]. Chin. Phys. Lett., 2018, 35(9): 120301
[11] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 120301
[12] Xin Zhao, Bo-Yang Liu, Ying Yi, Hong-Yi Dai, Ming Zhang. Impact of Distribution Fairness Degree and Entanglement Degree on Cooperation[J]. Chin. Phys. Lett., 2018, 35(3): 120301
[13] F. Safari, H. Jafari, J. Sadeghi, S. J. Johnston, D. Baleanu. Stability of Dirac Equation in Four-Dimensional Gravity[J]. Chin. Phys. Lett., 2017, 34(6): 120301
[14] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 120301
[15] Zi-Wei Zhu, Ji-Yuan Zheng, Lai Wang, Bing Xiong, Chang-Zheng Sun, Zhi-Biao Hao, Yi Luo, Yan-Jun Han, Jian Wang, Hong-Tao Li. $Ab\ Initio$ Calculation of Dielectric Function in Wurtzite GaN Based on Walter's Model[J]. Chin. Phys. Lett., 2017, 34(3): 120301
Viewed
Full text


Abstract