CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Tuning the Water Desalination Performance of Graphenic Layered Nanomaterials by Element Doping and Inter-Layer Spacing |
Fuxin Wang1, Chao Zhang2, Yanmei Yang3, Yuanyuan Qu1*, Yong-Qiang Li1, Baoyuan Man2, and Weifeng Li1* |
1School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China 2Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China 3College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Shandong Normal University, Jinan 250014, China
|
|
Cite this article: |
Fuxin Wang, Chao Zhang, Yanmei Yang et al 2020 Chin. Phys. Lett. 37 116101 |
|
|
Abstract Through atomic molecular dynamics simulations, we investigate the performance of two graphenic materials, boron (BC$_{3}$) and nitrogen doped graphene (C$_{3}$N), for seawater desalination and salt rejection, and take pristine graphene as a control. Effects of inter-layer separation have been explored. When water is filtered along the transverse directions of three-layered nanomaterials, the optimal inter-layer separation is 0.7–0.9 nm, which results in high water permeability and salt obstruction capability. The water permeability is considerably higher than porous graphene filter, and is about two orders of magnitude higher than commercial reverse osmosis (RO) membrane. By changing the inter-layer spacing, the water permeability of three graphenic layered nanomaterials follows an order of C$_{3}$N $\ge$ GRA $>$ BC$_{3}$ under the same working conditions. Amongst three nanomaterials, BC$_{3}$ is more sensitive to inter-layer separation which offers a possibility to control the water desalination speed by mechanically changing the membrane thickness. This is caused by the intrinsic charge transfer inside BC$_{3}$ that results in periodic distributed water clusters around the layer surface. Our present results reveal the high potentiality of multi-layered graphenic materials for controlled water desalination. It is hopeful that the present work can guide design and fabrication of highly efficient and tunable desalination architectures.
|
|
Received: 21 July 2020
Published: 08 November 2020
|
|
PACS: |
61.20.Ja
|
(Computer simulation of liquid structure)
|
|
31.15.xv
|
(Molecular dynamics and other numerical methods)
|
|
81.05.ue
|
(Graphene)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11874238), the Basic Research Project of Natural Science Foundation of Shandong Province (Grant No. ZR2018MA034), and Collaborative Innovation Funds of Shandong Normal University. |
|
|
[1] | Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J and Mayes A M 2010 Science and Technology for Water Purification in the Coming Decades in Nanoscience and Technology: A Collection of Reviews from Nature Journals (Singapore: World Scientific) |
[2] | Elimelech M and Phillip W A 2011 Science 333 712 |
[3] | Xu G R, Wang S H, Zhao H L, Wu S B, Xu J M, Li L and Liu X Y 2015 J. Membr. Sci. 493 428 |
[4] | Loeb S 1962 Adv. Chem. 38 117 |
[5] | Sint K, Wang B and Král P 2008 J. Am. Chem. Soc. 130 16448 |
[6] | Suk M E and Aluru N R 2010 J. Phys. Chem. Lett. 1 1590 |
[7] | Wang E N and Karnik R 2012 Nat. Nanotechnol. 7 552 |
[8] | Lee K P, Arnot T and Mattia D 2011 J. Membr. Sci. 370 1 |
[9] | Zhang J, Chen C, Pan J, Zhang L, Liang L, Kong Z, Wang X, Zhang W, Shen J 2020 Phys. Chem. Chem. Phys. 22 7224 |
[10] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 |
[11] | Cohentanugi D and Grossman J C 2015 Desalination 366 59 |
[12] | Mahmoud K A, Mansoor B, Mansour A and Khraisheh M K 2015 Desalination 356 208 |
[13] | Cohen-Tanugi D and Grossman J C 2012 Nano Lett. 12 3602 |
[14] | Konatham D, Yu J, Ho T A and Striolo A 2013 Langmuir 29 11884 |
[15] | Cohentanugi D and Grossman J C 2014 Nano Lett. 14 6171 |
[16] | Li T, Tu Q and L S 2019 Desalination 451 182 |
[17] | Ohern S C, Stewart C A, Boutilier M S H, Idrobo J C, Bhaviripudi S, Das S K, Kong J, Laoui T, Atieh M A and Karnik R 2012 ACS Nano 6 10130 |
[18] | O'Hern S C, Boutilier M S, Idrobo J C, Song Y, Kong J, Laoui T, Atieh M and Karnik R 2014 Nano Lett. 14 1234 |
[19] | Li W, Yang Y, Weber J K, Zhang G and Zhou R 2016 ACS Nano 10 1829 |
[20] | Yang Y, Li W, Zhou H, Zhang X and Zhao M 2016 Sci. Rep. 6 29218 |
[21] | Chogani A, Moosavi A and Rahiminejad M 2016 Chem. Prod. Process Model. 11 73 |
[22] | Russo C A and Golovchenko J A 2012 Proc. Natl. Acad. Sci. USA 109 5953 |
[23] | Boutilier M S H, Sun C, Ohern S C, Au H, Hadjiconstantinou N G and Karnik R 2014 ACS Nano 8 841 |
[24] | Xu G R, Xu J M, Su H C, Liu X Y, Zhao H L, Feng H J and Das R 2019 Desalination 451 18 |
[25] | Huang L, Zhang M, Li C and Shi G 2015 J. Phys. Chem. Lett. 6 2806 |
[26] | Xue M, Qiu H and Guo W 2013 Nanotechnology 24 505720 |
[27] | Cranford S W, Brommer D B and Buehler M J 2012 Nanoscale 4 7797 |
[28] | Abel M, Clair S, Ourdjini O, Mossoyan M and Porte L 2011 J. Am. Chem. Soc. 133 1203 |
[29] | Deng Q, Pan J, Yin X, Wang X, Zhao L, Kang S G, Jimenez-Cruz C A, Zhou R and Li J 2016 Phys. Chem. Chem. Phys. 18 8140 |
[30] | Winarto, Takaiwa D, Yamamoto E and Yasuoka K 2016 Phys. Chem. Chem. Phys. 18 33310 |
[31] | Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A and Bakajin O 2006 Science 312 1034 |
[32] | Nair R, Wu H, Jayaram P, Grigorieva I and Geim A 2012 Science 335 442 |
[33] | Kim D W, Choi J, Kim D and Jung H T 2016 J. Mater. Chem. A 4 17773 |
[34] | Radha B, Esfandiar A, Wang F C, Rooney A P, Gopinadhan K, Keerthi A, Mishchenko A, Janardanan A, Blake P, Fumagalli L, Lozada-Hidalgo M, Garaj S, Haigh S J, Grigorieva I V, Wu H A and Geim A K 2016 Nature 538 222 |
[35] | Chen L, Shi G, Shen J, Peng B, Zhang B, Wang Y, Bian F, Wang J, Li D and Qian Z 2017 Nature 550 380 |
[36] | Hu M and Mi B 2013 Environ. Sci. Technol. 47 3715 |
[37] | Sun P, Chen Q, Li X, Liu H, Wang K, Zhong M, Wei J, Wu D, Ma R, Sasaki T and Zhu H 2015 NPG Asia Mater. 7 e162 |
[38] | Chen C, Jia L, Li J, Zhang L, Liang L, Chen E, Kong Z, Wang X, Zhang W and Shen J W 2020 Desalination 491 114560 |
[39] | King T C, Matthews P D, Glass H, Cormack J A, Holgado J P, Leskes M, Griffin J M, Scherman O A, Barker P D and Grey C P 2015 Angew. Chem. Int. Ed. 54 5919 |
[40] | Mortazavi B 2017 Carbon 118 25 |
[41] | Mortazavi B, Shahrokhi M, Raeisi M, Zhuang X, Pereira L F C and Rabczuk T 2019 Carbon 149 733 |
[42] | Shirazi A, Abadi R, Izadifar M, Alajlan N and Rabczuk T 2018 Comput. Mater. Sci. 147 316 |
[43] | Abraham M J, Murtola T, Schulz R, Pall S, Smith J C, Hess B and Lindahl E 2015 SoftwareX 1–2 19 |
[44] | Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis J L, Dror R O and Shaw D E 2010 Proteins: Struct. Funct. Bioinf. 78 1950 |
[45] | Deng Y, Wang F, Liu Y, Yang Y, Qu Y, Zhao M, Mu Y and Li W 2020 Nanoscale 12 5217 |
[46] | Berendsen H, Grigera J and Straatsma T 1987 J. Phys. Chem. 91 6269 |
[47] | Hess B, Bekker H, Berendsen H J and Fraaije J G 1997 J. Comput. Chem. 18 1463 |
[48] | Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089 |
[49] | Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577 |
[50] | Cohen-Tanugi D and Grossman J C 2014 J. Chem. Phys. 141 074704 |
[51] | Yang Y, Mu L, Chen L, Shi G and Fang H 2019 Phys. Chem. Chem. Phys. 21 7623 |
[52] | Liang S, Wang S, Chen L and Fang H 2020 Sep. Purif. Technol. 241 116738 |
[53] | Li W, Wu W and Li Z 2018 ACS Nano 12 9309 |
[54] | Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S and Mahurin S M 2015 Nat. Nanotechnol. 10 459 |
[55] | Shi Q, Gao H, Zhang Y, Meng Z, Rao D, Su J, Liu Y, Wang Y and Lu R 2018 Carbon 136 21 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|