Chin. Phys. Lett.  2020, Vol. 37 Issue (11): 114203    DOI: 10.1088/0256-307X/37/11/114203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Rapid Measurement and Control of Nitrogen-Vacancy Center-Axial Orientation in Diamond Particles
Guobin Chen1,2, Yang Hui1, Junci Sun1, Wenhao He2, and Guanxiang Du2*
1School of Mechanical and Electrical Engineering, Suqian College, Suqian 223800, China
2College of Telecommunication & Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210000, China
Cite this article:   
Guobin Chen, Yang Hui, Junci Sun et al  2020 Chin. Phys. Lett. 37 114203
Download: PDF(905KB)   PDF(mobile)(957KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Determination and control of nitrogen-vacancy (NV) centers play an important role in sensing the vector field by using their quantum information. To measure orientation of NV centers in a diamond particle attached to a tapered fiber rapidly, we propose a new method to establish the direction cosine matrix between the lab frame and the NV body frame. In this method, only four groups of the ODMR spectrum peaks shift data need to be collected, and the magnetic field along $\pm Z$ and $\pm Y$ in the lab frame is applied in the meantime. We can also control any NV axis to rotate to the $X$, $Y$, $Z$ axes in the lab frame according to the elements of this matrix. The demonstration of the DC and microwave magnetic field vector sensing is presented. Finally, the proposed method can help us to perform vector magnetic field sensing more conveniently and rapidly.
Received: 05 August 2020      Published: 08 November 2020
PACS:  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  07.55.Ge (Magnetometers for magnetic field measurements)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: Supported by the National Key R&D Program of China (Grant No. 2017YFB0403602), the Nature Science Foundation of Jiangsu Province (Grant No. SBK2020041231), and the Suqian Sci&Tech Program (Grant No. K201912).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/11/114203       OR      https://cpl.iphy.ac.cn/Y2020/V37/I11/114203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guobin Chen
Yang Hui
Junci Sun
Wenhao He
and Guanxiang Du
[1] Doherty M W et al. 2013 Phys. Rep. 528 1
[2] Doherty M W et al. 2014 Phys. Rev. B 90 041201
[3] Plakhotnik T et al. 2014 Nano Lett. 14 4989
[4] Neumann P et al. 2013 Nano Lett. 13 2738
[5] Maclaurin D et al. 2012 Phys. Rev. Lett. 108 240403
[6] Wood A A et al. 2018 Sci. Adv. 4 eaar7691
[7] Doherty M W et al. 2014 Phys. Rev. Lett. 112 047601
[8] Grazioso F et al. 2013 Appl. Phys. Lett. 103 101905
[9] Rondin L et al. 2014 Rep. Prog. Phys. 77 056503
[10] Glenn D R et al. 2018 Nature 555 351
[11] Horsley A et al. 2018 Phys. Rev. Appl. 10 044039
[12] Dolde F et al. 2011 Nat. Phys. 7 459
[13] Chen X D et al. 2013 Europhys. Lett. 101 67003
[14] Wang P et al. 2015 Nat. Commun. 6 6631
[15] Kitazawa S et al. 2017 Phys. Rev. A 96 042115
[16] Schloss J M et al. 2018 Phys. Rev. Appl. 10 034044
[17] Doherty M W et al. 2014 New J. Phys. 16 063067
[18] Dolan P R et al. 2014 Opt. Express 22 4379
[19] Fukushige K et al. 2020 Appl. Phys. Lett. 116 264002
[20] Blakley S M et al. 2015 Opt. Lett. 40 3727
[21] Dmitriev A K and Vershovskii A K 2015 J. Opt. Soc. Am. B 33 B1
[22] Fedotov I V et al. 2016 Opt. Lett. 41 472
[23] Dong M M et al. 2018 Appl. Phys. Lett. 113 131105
[24] Yang B et al. 2019 IEEE Trans. Microwave Theory Tech. 67 2451
[25] He W H et al. 2019 Chin. Phys. Lett. 36 127601
[26] Chen G et al. 2020 IEEE Sens. J. 20 2440
[27] Fedotov I V et al. 2014 Opt. Lett. 39 6755
Related articles from Frontiers Journals
[1] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 114203
[2] Shuang-Shuang Fu, Shun-Long Luo. Quantifying Process Nonclassicality in Bosonic Fields[J]. Chin. Phys. Lett., 2019, 36(10): 114203
[3] Jin-Song Huang, Jing-Wen Wang, Yao Wang, Yan-Ling Li. High-Efficiency Quantum Routing in a Multi-Cross-Shaped Waveguide[J]. Chin. Phys. Lett., 2019, 36(3): 114203
[4] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 114203
[5] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 114203
[6] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 114203
[7] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 114203
[8] Sheng-Li Zhang, Chen-Hui Jin, Jian-Hong Shi , Jian-Sheng Guo, Xu-Bo Zou, Guang-Can Guo. Continuous Variable Quantum Teleportation in Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2017, 34(4): 114203
[9] Sheng-Li Zhang, Chen-Hui Jin, Jian-Sheng Guo, Jian-Hong Shi, Xu-Bo Zou, Guang-Can Guo. Decoy State Quantum Key Distribution via Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2016, 33(12): 114203
[10] Chuan-Qi Liu, Chang-Hua Zhu, Lian-Hui Wang, Lin-Xi Zhang, Chang-Xing Pei. Polarization-Encoding-Based Measurement-Device-Independent Quantum Key Distribution with a Single Untrusted Source[J]. Chin. Phys. Lett., 2016, 33(10): 114203
[11] Sheng-Li Zhang, Jian-Sheng Guo, Jian-Hong Shi, Xu-Bo Zou. Distillation of Atmospherically Disturbed Continuous Variable Quantum Entanglement with Photon Subtraction[J]. Chin. Phys. Lett., 2016, 33(07): 114203
[12] Song Yang, Ning-Juan Ruan, Yun Su, Xu-Ling Lin, Zhi-Qiang Wu. Noiseless Linear Amplification with General Local Unitary Operations[J]. Chin. Phys. Lett., 2016, 33(07): 114203
[13] ZHANG Sheng-Li, WANG-Kun, GUO Jian-Sheng, SHI Jian-Hong. Quantum Illumination with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2015, 32(09): 114203
[14] LV Ning, ZHANG Wei, GUO Yuan, ZHOU Qiang, HUANG Yi-Dong, PENG Jiang-De . End-Output Coupling Efficiency Measurement of Silicon Wire Waveguides Based on Correlated Photon Pair Generation[J]. Chin. Phys. Lett., 2013, 30(7): 114203
[15] ZHAO Sheng-Mei, GONG Long-Yan, LI Yong-Qiang, YANG Hua, SHENG Yu-Bo, CHENG Wei-Wen. A Large-alphabet Quantum Key Distribution Protocol Using Orbital Angular Momentum Entanglement[J]. Chin. Phys. Lett., 2013, 30(6): 114203
Viewed
Full text


Abstract