Chin. Phys. Lett.  2020, Vol. 37 Issue (10): 107501    DOI: 10.1088/0256-307X/37/10/107501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Field-Induced Metal–Insulator Transition in $\beta$-EuP$_3$
Guangqiang Wang1, Guoqing Chang2, Huibin Zhou1, Wenlong Ma1, Hsin Lin3, M. Zahid Hasan2,4, Su-Yang Xu5, and Shuang Jia1,6,7,8*
1International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
2Laboratory of Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ 08544, USA
3Institute of Physics, Academia Sinica, Taipei 11529, China
4Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
5Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
6Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
7CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
8Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Cite this article:   
Guangqiang Wang, Guoqing Chang, Huibin Zhou et al  2020 Chin. Phys. Lett. 37 107501
Download: PDF(3742KB)   PDF(mobile)(3400KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Metal–insulator transition (MIT) is one of the most conspicuous phenomena in correlated electron systems. However such a transition has rarely been induced by an external magnetic field as the field scale is normally too small compared with the charge gap. We present the observation of a magnetic-field-driven MIT in a magnetic semiconductor $\beta $-EuP$_3$. Concomitantly, we find a colossal magnetoresistance in an extreme way: the resistance drops billionfold at 2 K in a magnetic field less than 3 T. We ascribe this striking MIT as a field-driven transition from an antiferromagnetic and paramagnetic insulator to a spin-polarized topological semimetal, in which the spin configuration of Eu$^{2+}$ cations and spin-orbital coupling play a crucial role. As a phosphorene-bearing compound whose electrical properties can be controlled by the application of field, $\beta $-EuP$_3$ may serve as a tantalizing material in the basic research and even future electronics.
Received: 15 July 2020      Published: 29 September 2020
PACS:  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  73.50.Jt (Galvanomagnetic and other magnetotransport effects)  
  72.80.Ga (Transition-metal compounds)  
  71.55.Ak (Metals, semimetals, and alloys)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. U1832214 and 11774007), the National Key R&D Program of China (Grant No. 2018YFA0305601) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB28000000). The experimental and theoretical work at Princeton University was supported by the Gordon and Betty Moore Foundation (Grant Nos. GBMF4547 and GBMF9461/Hasan)
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/10/107501       OR      https://cpl.iphy.ac.cn/Y2020/V37/I10/107501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guangqiang Wang
Guoqing Chang
Huibin Zhou
Wenlong Ma
Hsin Lin
M. Zahid Hasan
Su-Yang Xu
and Shuang Jia
[1]Bauhofer W, Wittmann M, Gmelin E and von Schnering H G 1981 Proceedings of the 4th International Conference on Physics of Narrow Gap Semiconductors (14–17 September 1981 Linz, Austria) p.30
[2] Bauhofer W, Gmelin E, Mollendorf M, Nesper R and von Schnering H G 1985 J. Phys. C 18 3017
[3] Carvalho A, Wang M, Zhu X, Rodin A S, Su H and Neto A H C 2016 Nat. Rev. Mater. 1 16061
[4] Quan Y, Yin Z P and Pickett W E 2017 Phys. Rev. Lett. 118 176402
[5] Xu Q, Yu R, Fang Z, Dai X and Weng H 2017 Phys. Rev. B 95 045136
[6] Li S, Guo Z, Fu D, Pan X, Wang J, Ran K, Bao S, Ma Z, Cai Z, Wang R, Yu R, Sun J, Song F and Wen J 2018 Sci. Bull. 63 535
[7] Li J, Zhao L X, Wang Y Y, Wang X M, Ma C Y, Zhu W L, Gao M R, Zhang S, Ren Z A and Chen G F 2019 Chin. Phys. B 28 046202
[8] An L, Zhu X, Gao W, Wu M, Ning W and Tian M 2019 Phys. Rev. B 99 045143
[9] Song Y K, Wang G W, Li S C, Liu W L, Lu X L, Liu Z T, Li Z J, Wen J S, Yin Z P, Liu Z H and Shen D W 2020 Phys. Rev. Lett. 124 056402
[10] Hosen M M, Dhakal G, Wang B, Poudel N, Dimitri K, Kabir F, Sims C, Regmi S, Gofryk K, Kaczorowski D, Bansil A and Neupane M 2020 Sci. Rep. 10 2776
[11] Cheng E, Xia W, Shi X, Yu Z, Wang L, Yan L, Peets D C, Zhu C, Su H, Zhang Y, Dai D, Wang X, Zou Z, Yu N, Kou X, Yang W, Zhao W, Guo Y and Li S 2020 npj Quantum Mater. 5 38
[12] Chattopadhyay T, Brown P J, Thalmeier P and von Schnering H G 1986 Phys. Rev. Lett. 57 372
[13] Schröder A, Löhneysen H V and Bauhofer W 1986 Phys. Rev. Lett. 57 622
[14] Chattopadhyay T, Brown P J, Thalmeier P, Bauhofer W and von Schnering H G 1988 Phys. Rev. B 37 269
[15] Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039
[16] Kuwahara H, Tomioka Y, Asamitsu A, Moritomo Y and Tokura Y 1995 Science 270 961
[17] Ramirez A P 1997 J. Phys.: Condens. Matter 9 8171
[18] Tokura Y 2006 Rep. Prog. Phys. 69 797
[19] Tomioka Y, Asamitsu A, Moritomo Y and Tokura Y 1995 J. Phys. Soc. Jpn. 64 3626
[20] Limelette P, Georges A, Jérome D, Wzietek P, Metcalf P and Honig J M 2003 Science 302 89
[21] Dagotto E, Hotta T and Moreo A 2001 Phys. Rep. 344 1
[22] Liu E, Sun Y, Kumar N et al. 2018 Nat. Phys. 14 1125
[23] Wang Q, Xu Y, Lou R, Liu Z, Li M, Huang Y, Shen D, Weng H, Wang S and Lei H 2018 Nat. Commun. 9 3681
[24] Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806
[25] Lyanda-Geller Y, Chun S H, Salamon M B, Goldbart P M, Han P D, Tomioka Y, Asamitsu A and Tokura Y 2001 Phys. Rev. B 63 184426
[26] Shapira Y and Reed T B 1972 Phys. Rev. B 5 4877
[27] Zhang X, Yu L, Molnár S v, Fisk Z and Xiong P 2009 Phys. Rev. Lett. 103 106602
[28] Fang Z, Nagaosa N, Takahashi K S, Asamitsu A, Mathieu R, Ogasawara T, Yamada H, Kawasaki M, Tokura Y and Terakura K 2003 Science 302 92
[29] Mathieu R, Asamitsu A, Yamada H, Takahashi K S, Kawasaki M, Fang Z, Nagaosa N and Tokura Y 2004 Phys. Rev. Lett. 93 016602
[30] Suzuki T, Chisnell R, Devarakonda A, Liu Y T, Xiao D, Lynn J W and Checkelsky J G 2016 Nat. Phys. 12 1119
[31] Ueda K, Fujioka J, Yang B J, Shiogai J, Tsukazaki A, Nakamura S, Awaji S, Nagaosa N and Tokura Y 2015 Phys. Rev. Lett. 115 056402
[32] Tian Z, Kohama Y, Tomita T, Ishizuka H, Hsieh T H, Ishikawa J J, Kindo K, Balents L and Nakatsuji S 2016 Nat. Phys. 12 134
[33] Oliver M R, Dimmock J O, McWhorter A L and Reed T B 1972 Phys. Rev. B 5 1078
[34] Torrance J B, Shafer M W and McGuire T R 1972 Phys. Rev. Lett. 29 1168
[35] Sinjukow P and Nolting W 2003 Phys. Rev. B 68 125107
[36] Steeneken P G, Tjeng L H, Elfimov I, Sawatzky G A, Ghiringhelli G, Brookes N B and Huang D J 2002 Phys. Rev. Lett. 88 047201
[37] Cheng E, Xia W, Shi X, Wang C, Xi C, Xu S, Peets D C, Wang L, Su H, Pi L, Ren W, Wang X, Yu N, Chen Y, Zhao W, Liu Z, Guo Y and Li S 2020 arXiv:2006.16045[cond-mat.mtrl-sci]
Related articles from Frontiers Journals
[1] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 107501
[2] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 107501
[3] Honglei Feng, Yong Li, Youguo Shi, Hong-Yi Xie, Yongqing Li, and Yang Xu. Resistance Anomaly and Linear Magnetoresistance in Thin Flakes of Itinerant Ferromagnet Fe$_{3}$GeTe$_{2}$[J]. Chin. Phys. Lett., 2022, 39(7): 107501
[4] Weizheng Cao, Yunlong Su, Qi Wang, Cuiying Pei, Lingling Gao, Yi Zhao, Changhua Li, Na Yu, Jinghui Wang, Zhongkai Liu, Yulin Chen, Gang Li, Jun Li, and Yanpeng Qi. Quantum Oscillations in Noncentrosymmetric Weyl Semimetal SmAlSi[J]. Chin. Phys. Lett., 2022, 39(4): 107501
[5] Kun Luo, Wei Chen, Li Sheng, and D. Y. Xing. Random-Gate-Voltage Induced Al'tshuler–Aronov–Spivak Effect in Topological Edge States[J]. Chin. Phys. Lett., 2021, 38(11): 107501
[6] Shaobo Liu, Jie Yuan, Sheng Ma, Zouyouwei Lu, Yuhang Zhang, Mingwei Ma, Hua Zhang, Kui Jin, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Magnetic-Field-Induced Spin Nematicity in FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-y}$Te$_{y}$ Superconductor Systems[J]. Chin. Phys. Lett., 2021, 38(8): 107501
[7] Rui Zhang, Yuan-Chuan Biao, Wen-Long You, Xiao-Guang Wang, Yu-Yu Zhang, and Zi-Xiang Hu. Generalized Rashba Coupling Approximation to a Resonant Spin Hall Effect of the Spin–Orbit Coupling System in a Magnetic Field[J]. Chin. Phys. Lett., 2021, 38(7): 107501
[8] Sheng Xu, Liqin Zhou, Xiao-Yan Wang, Huan Wang, Jun-Fa Lin, Xiang-Yu Zeng, Peng Cheng, Hongming Weng, and Tian-Long Xia. Quantum Oscillations and Electronic Structure in the Large-Chern-Number Topological Chiral Semimetal PtGa[J]. Chin. Phys. Lett., 2020, 37(10): 107501
[9] Kaixuan Zhang, Yongping Du, Pengdong Wang, Laiming Wei, Lin Li, Qiang Zhang, Wei Qin, Zhiyong Lin, Bin Cheng, Yifan Wang, Han Xu, Xiaodong Fan, Zhe Sun, Xiangang Wan, and Changgan Zeng. Butterfly-Like Anisotropic Magnetoresistance and Angle-Dependent Berry Phase in a Type-II Weyl Semimetal WP$_{2}$[J]. Chin. Phys. Lett., 2020, 37(9): 107501
[10] Qingwei Fu, Yong Li, Lina Chen, Fusheng Ma, Haotian Li, Yongbing Xu, Bo Liu, Ronghua Liu, and Youwei Du. Mode Structures and Damping of Quantized Spin Waves in Ferromagnetic Nanowires[J]. Chin. Phys. Lett., 2020, 37(8): 107501
[11] Huan-Cheng Chen, Zhe-Feng Lou, Yu-Xing Zhou, Qin Chen, Bin-Jie Xu, Shui-Jin Chen, Jian-Hua Du, Jin-Hu Yang, Hang-Dong Wang, Ming-Hu Fang. Negative Magnetoresistance in Antiferromagnetic Topological Insulator EuSn$_2$As$_2$$^{*}$[J]. Chin. Phys. Lett., 2020, 37(4): 107501
[12] Gang Shi, Mingjie Zhang, Dayu Yan, Honglei Feng, Meng Yang, Youguo Shi, Yongqing Li. Anomalous Hall Effect in Layered Ferrimagnet MnSb$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 107501
[13] Qi Wang, Qianheng Du, Cedomir Petrovic, Hechang Lei. Physical Properties of Half-Heusler Antiferromagnet MnPtSn Single Crystal[J]. Chin. Phys. Lett., 2020, 37(2): 107501
[14] Xin-Min Wang, Ling-Xiao Zhao, Jing Li, Mo-Ran Gao, Wen-Liang Zhu, Chao-Yang Ma, Yi-Yan Wang, Shuai Zhang, Zhi-An Ren, Gen-Fu Chen. Negative Longitudinal Magnetoresistance in the $c$-Axis Resistivity of Cd[J]. Chin. Phys. Lett., 2019, 36(5): 107501
[15] Moran Gao, Junbao He, Wenliang Zhu, Shuai Zhang, Xinmin Wang, Jing Li, Chaoyang Ma, Hui Liang, Zhian Ren, Genfu Chen. Magnetotransport Properties of a Nodal Line Semimetal TiSi[J]. Chin. Phys. Lett., 2018, 35(11): 107501
Viewed
Full text


Abstract