CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures |
Fang Hong1†, Liuxiang Yang2†, Pengfei Shan1,3, Pengtao Yang1, Ziyi Liu1, Jianping Sun1, Yunyu Yin1, Xiaohui Yu1,3*, Jinguang Cheng1,3*, and Zhongxian Zhao1,3 |
1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2Center for High Pressure Science & Technology Advanced Research, Beijing 100094, China 3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
|
|
Cite this article: |
Fang Hong, Liuxiang Yang, Pengfei Shan et al 2020 Chin. Phys. Lett. 37 107401 |
|
|
Abstract Recently, the theoretically predicted lanthanum superhydride, LaH$_{10 \pm \delta}$, with a clathrate-like structure was successfully synthesized and found to exhibit a record high superconducting transition temperature $T_{\rm c} \approx 250$ K at $\sim $170 GPa, opening a new route for room-temperature superconductivity. However, since in situ experiments at megabar pressures are very challenging, few groups have reported the $\sim $250 K superconducting transition in LaH$_{10 \pm \delta}$. Here, we establish a simpler sample-loading procedure that allows a relatively large sample size for synthesis and a standard four-probe configuration for resistance measurements. Following this procedure, we successfully synthesized LaH$_{10 \pm \delta}$ with dimensions up to $10 \times 20$ μm$^{2}$ by laser heating a thin La flake and ammonia borane at $\sim $1700 K in a symmetric diamond anvil cell under the pressure of 165 GPa. The superconducting transition at $T_{\rm c} \approx 250$ K was confirmed through resistance measurements under various magnetic fields. Our method will facilitate explorations of near-room-temperature superconductors among metal superhydrides.
|
|
Received: 16 September 2020
Published: 29 September 2020
|
|
PACS: |
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
81.40.Vw
|
(Pressure treatment)
|
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
88.30.rd
|
(Inorganic metal hydrides)
|
|
|
Fund: Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB33000000 and XDB25000000), the Beijing Natural Science Foundation (Grant No. Z190008), the National Natural Science Foundation of China (Grant Nos. 11575288, 11921004, 11888101, 11904391, 11834016 and 11874400), the National Key R&D Program of China (Grant Nos. 2016YFA0401503 and 2018YFA0305700), and the Youth Innovation Promotion Association, the Key Research Program of Frontier Sciences and the Interdisciplinary Innovation Team of Chinese Academy of Sciences (Grant Nos. 2016006, JCTD-2019-01, and QYZDBSSW-SLH013). |
|
|
[1] | Sun Y, Lv J, Xie Y, Liu H and Ma Y 2019 Phys. Rev. Lett. 123 097001 |
[2] | Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y 2017 Phys. Rev. Lett. 119 107001 |
[3] | Flores-Livas J A, Boeri L, Sanna A, Profeta G, Arita R and Eremets M 2020 Phys. Rep. 856 1 |
[4] | Uchida S I 2015 High Temperature Superconductivity: The Road to Higher Critical Temperature in Springer Series in Materials Science vol 213 (Berlin: Springer) |
[5] | Bednorz J G and Müller K A 1986 Z. Phys. B: Condens. Matter 64 189 |
[6] | Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296 |
[7] | Chen X H, Wu T, Wu G, Liu R H, Chen H and Fang D F 2008 Nature 453 761 |
[8] | Schilling A, Cantoni M, Guo J and Ott H 1993 Nature 363 56 |
[9] | Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H and Mao H K 1994 Phys. Rev. B 50 4260 |
[10] | Ashcroft N W 1968 Phys. Rev. Lett. 21 1748 |
[11] | Ashcroft N 2004 Phys. Rev. Lett. 92 187002 |
[12] | Babaev E and Ashcroft N 2004 Nature 431 666 |
[13] | Liu X D, Dalladay-Simpson P, Howie R T, Li B and Gregoryanz E 2017 Science 357 eaan2286 |
[14] | Li B, Ji C, Yang W, Wang J, Yang K, Xu R, Liu W, Cai Z, Chen J and Mao H K 2018 Proc. Natl. Acad. Sci. USA 115 1713 |
[15] | Drozdov A, Eremets M, Troyan I, Ksenofontov V and Shylin S I 2015 Nature 525 73 |
[16] | Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W and Cui T 2015 Sci. Rep. 4 6968 |
[17] | Liu H, Naumov I I, Hoffmann R, Ashcroft N and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990 |
[18] | Semenok D V, Kruglov I A, Savkin I A, Kvashnin A G and Oganov A R 2020 Curr. Opin. Solid State Mater. Sci. 24 100808 |
[19] | Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V and Hemley R J 2019 Phys. Rev. Lett. 122 027001 |
[20] | Drozdov A, Kong P, Minkov V, Besedin S, Kuzovnikov M, Mozaffari S, Balicas L, Balakirev F, Graf D and Prakapenka V 2019 Nature 569 528 |
[21] | Liu H, Naumov I I, Geballe Z M, Somayazulu M, John S T and Hemley R J 2018 Phys. Rev. B 98 100102 |
[22] | Kong P, Minkov V, Kuzovnikov M, Besedin S, Drozdov A, Mozaffari S, Balicas L, Balakirev F, Prakapenka V and Greenberg E 2019 arXiv:1909.10482 [cond-mat.supr-con] |
[23] | Semenok D V, Kvashnin A G, Ivanova A G, Svitlyk V, Fominski V Y, Sadakov A V, Sobolevskiy O A, Pudalov V M, Troyan I A and Oganov A R 2020 Mater. Today 33 36 |
[24] | Akahama Y and Kawamura H 2007 High Press. Res. 27 473 |
[25] | Akahama Y and Kawamura H 2006 J. Appl. Phys. 100 043516 |
[26] | Werthamer N, Helfand E and Hohenberg P 1966 Phys. Rev. 147 295 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|