Chin. Phys. Lett.  2020, Vol. 37 Issue (10): 107401    DOI: 10.1088/0256-307X/37/10/107401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures
Fang Hong1†, Liuxiang Yang2†, Pengfei Shan1,3, Pengtao Yang1, Ziyi Liu1, Jianping Sun1, Yunyu Yin1, Xiaohui Yu1,3*, Jinguang Cheng1,3*, and Zhongxian Zhao1,3
1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Center for High Pressure Science & Technology Advanced Research, Beijing 100094, China
3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Fang Hong, Liuxiang Yang, Pengfei Shan et al  2020 Chin. Phys. Lett. 37 107401
Download: PDF(688KB)   PDF(mobile)(677KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recently, the theoretically predicted lanthanum superhydride, LaH$_{10 \pm \delta}$, with a clathrate-like structure was successfully synthesized and found to exhibit a record high superconducting transition temperature $T_{\rm c} \approx 250$ K at $\sim $170 GPa, opening a new route for room-temperature superconductivity. However, since in situ experiments at megabar pressures are very challenging, few groups have reported the $\sim $250 K superconducting transition in LaH$_{10 \pm \delta}$. Here, we establish a simpler sample-loading procedure that allows a relatively large sample size for synthesis and a standard four-probe configuration for resistance measurements. Following this procedure, we successfully synthesized LaH$_{10 \pm \delta}$ with dimensions up to $10 \times 20$ μm$^{2}$ by laser heating a thin La flake and ammonia borane at $\sim $1700 K in a symmetric diamond anvil cell under the pressure of 165 GPa. The superconducting transition at $T_{\rm c} \approx 250$ K was confirmed through resistance measurements under various magnetic fields. Our method will facilitate explorations of near-room-temperature superconductors among metal superhydrides.
Received: 16 September 2020      Published: 29 September 2020
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  81.40.Vw (Pressure treatment)  
  62.50.-p (High-pressure effects in solids and liquids)  
  88.30.rd (Inorganic metal hydrides)  
Fund: Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB33000000 and XDB25000000), the Beijing Natural Science Foundation (Grant No. Z190008), the National Natural Science Foundation of China (Grant Nos. 11575288, 11921004, 11888101, 11904391, 11834016 and 11874400), the National Key R&D Program of China (Grant Nos. 2016YFA0401503 and 2018YFA0305700), and the Youth Innovation Promotion Association, the Key Research Program of Frontier Sciences and the Interdisciplinary Innovation Team of Chinese Academy of Sciences (Grant Nos. 2016006, JCTD-2019-01, and QYZDBSSW-SLH013).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/10/107401       OR      https://cpl.iphy.ac.cn/Y2020/V37/I10/107401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fang Hong
Liuxiang Yang
Pengfei Shan
Pengtao Yang
Ziyi Liu
Jianping Sun
Yunyu Yin
Xiaohui Yu
Jinguang Cheng
and Zhongxian Zhao
[1] Sun Y, Lv J, Xie Y, Liu H and Ma Y 2019 Phys. Rev. Lett. 123 097001
[2] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y 2017 Phys. Rev. Lett. 119 107001
[3] Flores-Livas J A, Boeri L, Sanna A, Profeta G, Arita R and Eremets M 2020 Phys. Rep. 856 1
[4]Uchida S I 2015 High Temperature Superconductivity: The Road to Higher Critical Temperature in Springer Series in Materials Science vol 213 (Berlin: Springer)
[5] Bednorz J G and Müller K A 1986 Z. Phys. B: Condens. Matter 64 189
[6] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[7] Chen X H, Wu T, Wu G, Liu R H, Chen H and Fang D F 2008 Nature 453 761
[8] Schilling A, Cantoni M, Guo J and Ott H 1993 Nature 363 56
[9] Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H and Mao H K 1994 Phys. Rev. B 50 4260
[10] Ashcroft N W 1968 Phys. Rev. Lett. 21 1748
[11] Ashcroft N 2004 Phys. Rev. Lett. 92 187002
[12] Babaev E and Ashcroft N 2004 Nature 431 666
[13] Liu X D, Dalladay-Simpson P, Howie R T, Li B and Gregoryanz E 2017 Science 357 eaan2286
[14] Li B, Ji C, Yang W, Wang J, Yang K, Xu R, Liu W, Cai Z, Chen J and Mao H K 2018 Proc. Natl. Acad. Sci. USA 115 1713
[15] Drozdov A, Eremets M, Troyan I, Ksenofontov V and Shylin S I 2015 Nature 525 73
[16] Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W and Cui T 2015 Sci. Rep. 4 6968
[17] Liu H, Naumov I I, Hoffmann R, Ashcroft N and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990
[18] Semenok D V, Kruglov I A, Savkin I A, Kvashnin A G and Oganov A R 2020 Curr. Opin. Solid State Mater. Sci. 24 100808
[19] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V and Hemley R J 2019 Phys. Rev. Lett. 122 027001
[20] Drozdov A, Kong P, Minkov V, Besedin S, Kuzovnikov M, Mozaffari S, Balicas L, Balakirev F, Graf D and Prakapenka V 2019 Nature 569 528
[21] Liu H, Naumov I I, Geballe Z M, Somayazulu M, John S T and Hemley R J 2018 Phys. Rev. B 98 100102
[22] Kong P, Minkov V, Kuzovnikov M, Besedin S, Drozdov A, Mozaffari S, Balicas L, Balakirev F, Prakapenka V and Greenberg E 2019 arXiv:1909.10482 [cond-mat.supr-con]
[23] Semenok D V, Kvashnin A G, Ivanova A G, Svitlyk V, Fominski V Y, Sadakov A V, Sobolevskiy O A, Pudalov V M, Troyan I A and Oganov A R 2020 Mater. Today 33 36
[24] Akahama Y and Kawamura H 2007 High Press. Res. 27 473
[25] Akahama Y and Kawamura H 2006 J. Appl. Phys. 100 043516
[26] Werthamer N, Helfand E and Hohenberg P 1966 Phys. Rev. 147 295
Related articles from Frontiers Journals
[1] Xiaolei Yi, Xiangzhuo Xing, Yan Meng, Nan Zhou, Chunlei Wang, Yue Sun, and Zhixiang Shi. Anomalous Second Magnetization Peak in 12442-Type RbCa$_2$Fe$_4$As$_4$F$_2$ Superconductors[J]. Chin. Phys. Lett., 2023, 40(2): 107401
[2] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Erratum: Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs [Chin. Phys. Lett. 39, 127501 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 107401
[3] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs[J]. Chin. Phys. Lett., 2022, 39(12): 107401
[4] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2022, 39(9): 107401
[5] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 107401
[6] Shuo Li, Shuo Han, Shaohua Yan, Yi Cui, Le Wang, Shanmin Wang, Shanshan Chen, Hechang Lei, Feng Yuan, Jinshan Zhang, and Weiqiang Yu. Pressure-Induced Superconductivity in Flat-Band Kagome Compounds Pd$_3$P$_2$(S$_{1-x}$Se$_x$)$_8$[J]. Chin. Phys. Lett., 2022, 39(6): 107401
[7] Ziqin Yang, Shichun Huang, Yuan He, Xiangyang Lu, Hao Guo, Chunlong Li, Xiaofei Niu, Pingran Xiong, Yukun Song, Andong Wu, Bin Xie, Zhiming You, Qingwei Chu, Teng Tan, Feng Pan, Ming Lu, Didi Luo, Junhui Zhang, Shenghu Zhang, and Wenlong Zhan. Low-Temperature Baking Effect of the Radio-Frequency Nb$_{3}$Sn Thin Film Superconducting Cavity[J]. Chin. Phys. Lett., 2021, 38(9): 107401
[8] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 107401
[9] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 107401
[10] Yi Cui, Cong Li, Qing Li, Xiyu Zhu, Ze Hu, Yi-feng Yang, Jinshan Zhang, Rong Yu, Hai-Hu Wen, and Weiqiang Yu. NMR Evidence of Antiferromagnetic Spin Fluctuations in Nd$_{0.85}$Sr$_{0.15}$NiO$_2$[J]. Chin. Phys. Lett., 2021, 38(6): 107401
[11] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 107401
[12] Qiong Wu, Huaxue Zhou, Yanling Wu, Lili Hu, Shunli Ni, Yichao Tian, Fei Sun, Fang Zhou, Xiaoli Dong, Zhongxian Zhao, and Jimin Zhao. Ultrafast Quasiparticle Dynamics and Electron-Phonon Coupling in (Li$_{0.84}$Fe$_{0.16}$)OHFe$_{0.98}$Se[J]. Chin. Phys. Lett., 2020, 37(9): 107401
[13] Kang Zhao, Qing-Ge Mu, Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Tong Liu, Bo-Jin Pan, Shuai Zhang, Gen-Fu Chen, and Zhi-An Ren. A New Quasi-One-Dimensional Ternary Molybdenum Pnictide Rb$_{2}$Mo$_{3}$As$_{3}$ with Superconducting Transition at 10.5 K[J]. Chin. Phys. Lett., 2020, 37(9): 107401
[14] Shuai Zhang, Yiyan Wang, Chaoyang Ma, Wenliang Zhu, Zhian Ren, Lei Shan, and Genfu Chen. Superconductivity at the Normal Metal/Dirac Semimetal Cd$_3$As$_2$ Interface[J]. Chin. Phys. Lett., 2020, 37(7): 107401
[15] Yi Cui, Ze Hu, Jin-Shan Zhang, Wen-Long Ma, Ming-Wei Ma, Zhen Ma, Cong Wang, Jia-Qiang Yan, Jian-Ping Sun, Jin-Guang Cheng, Shuang Jia, Yuan Li, Jin-Sheng Wen, He-Chang Lei, Pu Yu, Wei Ji, Wei-Qiang Yu. Ionic-Liquid-Gating Induced Protonation and Superconductivity in FeSe, FeSe$_{0.93}$S$_{0.07}$, ZrNCl, 1$T$-TaS$_2$ and Bi$_2$Se$_3$[J]. Chin. Phys. Lett., 2019, 36(7): 107401
Viewed
Full text


Abstract