CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Perovskite Termination-Dependent Charge Transport Behaviors of the CsPbI$_{3}$/Black Phosphorus van der Waals Heterostructure |
Yong-Hua Cao1,2,3, Jin-Tao Bai1,2, and Hong-Jian Feng1* |
1School of Physics, Northwest University, Xi'an 710127, China 2Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710127, China 3School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
|
|
Cite this article: |
Yong-Hua Cao, Jin-Tao Bai, and Hong-Jian Feng 2020 Chin. Phys. Lett. 37 107301 |
|
|
Abstract Fundamental understanding of interfacial charge behaviors is of great significance for the optoelectronic and photovoltaic applications. However, the crucial roles of perovskite terminations in charge transport processes have not been completely clear. We investigate the charge transfer behaviors of the CsPbI$_{3}$/black phosphorus (BP) van der Waals heterostructure by using the density functional theory calculations with a self-energy correction. The calculations at the atomic level demonstrate the type-II band alignments of the CsPbI$_{3}$/BP heterostructure, which make electrons transfer from the perovskite side to monolayer BP. Moreover, the stronger interaction and narrower physical separation of the interfaces can lead to higher charge tunneling probabilities in the CsPbI$_{3}$/BP heterostructure. Due to different electron affinities, the PbI$_{2}$-terminated perovskite slab tends to collect electrons from the adjacent materials, whereas the CsI-termination prefers to inject electrons into transport materials. In addition, the interface coupling effect enhances the visible-light-region absorption of the CsPbI$_{3}$/BP heterostructure. This study highlights the importance of the perovskite termination in the charge transport processes and provides theoretical guidelines to develop high-performance photovoltaic and optoelectronic devices.
|
|
Received: 25 June 2020
Published: 29 September 2020
|
|
PACS: |
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 51972266, 51672214, 11304248, and 11247230), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2014JM1014), the Scientific Research Program Funded by Shaanxi Provincial Education Department (Grant No. 2013JK0624), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shaanxi Province of China, and the Youth Bai-Ren Project in Shaanxi Province of China. |
|
|
[1] | Bi D, Tress W, Dar M I, Gao P, Luo J, Renevier C, Schenk K, Abate A, Giordano F, Baena J P C, Zakeeruddin S M, Nazeeruddin M K, Grätzel M and Hagfeldt A 2016 Sci. Adv. 2 e1501170 |
[2] | Stolterfoht M, Wolff C M, Amir Y, Paulke A, Perdigon L, Caprioglio P and Neher D 2017 Energy & Environ. Sci. 10 1530 |
[3] | Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H and Seok S I I 2017 Science 356 1376 |
[4] | Eperon G E, Paternò G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F and Snaith H J 2015 J. Mater. Chem. A 3 19688 |
[5] | Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L and Mohite A D 2015 Science 347 522 |
[6] | Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S and Sum T C 2013 Science 342 344 |
[7] | Marchioro A, Teuscher J, Friedrich D, Kunst M, van de Krol R, Moehl T, Grätzel M and Moser J E 2014 Nat. Photon. 8 250 |
[8] | Xiao Z and Yan Y 2017 Adv. Energy Mater. 7 1701136 |
[9] | Best Research-Cell Efficiency Chart (NREL, accessed 25 June 2020) https://www.nrel.gov/pv/cell-efficiency.html |
[10] | Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z and You J 2019 Nat. Photon. 13 460 |
[11] | Tan H, Jain A, Voznyy O, Lan X, de Arquer F P G, Fan J Z, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zhao Y, Lu Z H, Yang Z, Hoogland S and Sargent E H 2017 Science 355 722 |
[12] | Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S I I, Lee J and Seo J 2018 Nat. Energy 3 682 |
[13] | Zhang Y Y, Chen S, Xu P, Xiang H, Gong X G, Walsh A and Wei S H 2018 Chin. Phys. Lett. 35 036104 |
[14] | Schulz P 2018 ACS Energy Lett. 3 1287 |
[15] | Ma J, Guo X, Zhou L, Lin Z, Zhang C, Yang Z, Lu G, Chang J and Hao Y 2018 ACS Appl. Energy Mater. 1 3826 |
[16] | Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 |
[17] | Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 |
[18] | Coleman J N, Lotya M, O'Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grumlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, McComb D W, Nellist P D and Nicolosi V 2011 Science 331 568 |
[19] | Liu Z, Lau S P and Yan F 2015 Chem. Soc. Rev. 44 5638 |
[20] | Zhang H 2015 ACS Nano 9 9451 |
[21] | Haigh S J, Gholinia A, Jalil R, Romani S, Britnell L, Elias D C, Novoselov K S, Ponomarenko L A, Geim A K and Gorbachev R 2012 Nat. Mater. 11 764 |
[22] | Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y and Wang F 2014 Nat. Nanotechnol. 9 682 |
[23] | Zhu X, Monahan N R, Gong Z, Zhu H, Williams K W and Nelson C A 2015 J. Am. Chem. Soc. 137 8313 |
[24] | Ceballos F, Bellus M Z, Chiu H Y and Zhao H 2014 ACS Nano 8 12717 |
[25] | He Y F, Wang L X, Xiao Z X, Lv Y W, Liao L and Jiang C Z 2020 Chin. Phys. Lett. 37 088502 |
[26] | Yin G, Zhao H, Feng J, Sun J, Yan J, Liu Z, Lin S and Liu S 2018 J. Mater. Chem. A 6 9132 |
[27] | Jiang L L, Wang Z K, Li M, Zhang C C, Ye Q Q, Hu K H, Lu D Z, Fang P F and Liao L S 2018 Adv. Funct. Mater. 28 1705875 |
[28] | Liu B, Long M, Cai M Q and Yang J 2018 Appl. Phys. Lett. 112 043901 |
[29] | Yoon J, Sung H, Lee G, Cho W, Ahn N, Jung H S and Choi M 2017 Energy & Environ. Sci. 10 337 |
[30] | Heo J H, Shin D H, Jang M H, Lee M L, Kang M G and Im S H 2017 J. Mater. Chem. A 5 21146 |
[31] | Liu Z, You P, Xie C, Tang G and Yan F 2016 Nano Energy 28 151 |
[32] | Zhao X, Tao L, Li H, Huang W, Sun P, Liu J, Liu S, Sun Q, Cui Z, Sun L, Shen Y, Yang Y and Wang M 2018 Nano Lett. 18 2442 |
[33] | Huang P, Wang Z W, Liu Y, Zhang K, Yuan L, Zhou Y, Song B and Li Y 2017 ACS Appl. Mater. & Interfaces 9 25323 |
[34] | Mosconi E, Azpiroz J M and De Angelis F 2015 Chem. Mater. 27 4885 |
[35] | Ran C, Xu J, Gao W, Huang C and Dou S 2018 Chem. Soc. Rev. 47 4581 |
[36] | Dong Y, Li K, Luo W, Zhu C, Guan H, Wang H, Wang L, Deng K, Zhou H, Xie H, Bai Y, Li Y and Chen Q 2020 Angew. Chem. Int. Ed. 59 12931 |
[37] | Perdew J P, Ernzerhof M and Burke K 1996 J. Chem. Phys. 105 9982 |
| Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[38] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[39] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[40] | Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 |
[41] | Bengtsson L 1999 Phys. Rev. B 59 12301 |
[42] | Ferreira L G, Marques M and Teles L K 2008 Phys. Rev. B 78 125116 |
[43] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 |
[44] | Heyd J, Scuseria G E and Ernzerhof 2003 J. Chem. Phys. 118 8207 |
[45] | Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033 |
[46] | Zhang S, Yang J, Xu R, Wang F, Li W, Ghufran M, Zhang Y W, Yu Z, Zhang G, Qin Q and Lu Y 2014 ACS Nano 8 9590 |
[47] | Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475 |
[48] | Rudenko A N and Katsnelson M I 2014 Phys. Rev. B 89 201408 |
[49] | Bader R F W 1991 Chem. Rev. 91 893 |
[50] | Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397 |
[51] | Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M and Snaith H J 2014 Energy & Environ. Sci. 7 982 |
[52] | Giorgi G, Fujisawa J I, Segawa H and Yamashita K 2014 J. Phys. Chem. C 118 12176 |
[53] | Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T and Luther J M 2016 Science 354 92 |
[54] | Graziano G, Klimeš J, Fernandez-Alonso F and Michaelides A 2012 J. Phys.: Condens. Matter 24 424216 |
[55] | Belpassi L, Reca M L, Tarantelli F, Roncaratti L F, Pirani F, Cappelletti D, Faure A and Scribano Y 2010 J. Am. Chem. Soc. 132 13046 |
[56] | Ji X, Zhang J, Wang Y, Qian H and Yu Z 2013 Phys. Chem. Chem. Phys. 15 17883 |
[57] | Wang Y, Yang R X, Quhe R, Zhong H, Cong L, Ye M, Ni Z, Song Z, Yang J, Shi J, Li J and Lu J 2016 Nanoscale 8 1179 |
[58] | Zhu S, Ni Y, Liu J and Yao K 2015 J. Phys. D 48 445101 |
[59] | Cao Y H, Deng Z Y, Wang M Z, Bai J T, Wei S H and Feng H J 2018 J. Phys. Chem. C 122 17228 |
[60] | Cao Y H, Li Y F, He J W, Qian C X, Zhang Q, Bai J T and Feng H J 2019 Adv. Mater. Interfaces 6 1901330 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|