FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Tunable Optical Bandpass Filter via a Microtip-Touched Tapered Optical Fiber |
Peng-Fei Zhang1,2*, Li-Jun Song1, Chang-Lin Zou3,1*, Xin Wang1, Chen-Xi Wang1, Gang Li1,2, and Tian-Cai Zhang1,2 |
1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China 3CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
|
|
Cite this article: |
Peng-Fei Zhang, Li-Jun Song, Chang-Lin Zou et al 2020 Chin. Phys. Lett. 37 104201 |
|
|
Abstract We demonstrate a tunable bandpass optical filter based on a tapered optical fiber (TOF) touched by a hemispherical microfiber tip (MFT). Other than the interference and selective material absorption effects, the filter relies on the controllable and wavelength-dependent mode–mode interactions in TOF. Experimentally, a large range of tunability is realized by controlling the position of the MFT in contact with the TOF for various TOF radii, and two distinct bandpass filter mechanisms are demonstrated. The center wavelength of the bandpass filter can be tuned from 890 nm to 1000 nm, while the FWHM bandwidth can be tuned from 110 nm to 240 nm when the MFT touches the TOF in the radius range from 160 nm to 390 nm. The distinction ratio can reach $28 \pm 3$ dB experimentally. The combined TOF-MFT is an in-line tunable bandpass optical filter that has great application potential in optical networks and spectroscopy, and the principle could also be generalized to other integrated photonic devices.
|
|
Received: 03 August 2020
Published: 22 September 2020
|
|
|
|
Fund: Supported by the National Basic Research Program of China (Grant No. 2017YFA0304502), the National Natural Science Foundation of China (Grant Nos. 11974225, 11634008, and 11974223), the Fund for Shanxi “1331 Project” Key Subjects, the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices (Grant No. KF201809), and the Anhui Initiative in Quantum Information Technologies (Grant No. AHY130000). |
|
|
[1] | Bass M 1995 Handbook of Optics (McGraw-Hill, Inc) |
[2] | Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K and Lipson M 2014 Nat. Commun. 5 3069 |
[3] | Harrison T R, Hornig G J, Huang C, Bu L, Haluza-Delay T, Scheuer K and DeCorby R G 2019 Opt. Express 27 23633 |
[4] | Kuo W K, Lin W S and Yang S W 2020 Opt. Lett. 45 65 |
[5] | Stone J and Stulz L W 1987 Electron. Lett. 23 781 |
[6] | Takashashi H 1995 Appl. Opt. 34 667 |
[7] | Parmentier R and Lequime M 2003 Opt. Lett. 28 728 |
[8] | Lumeau J, Lemarchand F, Begou T, Arhilger D and Hagedorn Harro 2019 Opt. Lett. 44 1829 |
[9] | Oton E and Netter E 2017 Opt. Express 25 13314 |
[10] | Jeong M Y and Mang J Y 2018 Appl. Opt. 57 1962 |
[11] | Birks T A and Li Y W 1992 J. Lightwave Technol. 10 432 |
[12] | Tong L, Gattass R R, Ashcom J B, He S, Lou J, Shen M, Maxwell I and Mazur E 2003 Nature 426 816 |
[13] | Tong L M and Sumetsky M 2017 Subwavelength and Nanometer Diameter Optical Fibers (China: Zhejiang University Press, Switzerland: Springer International Publishing) |
[14] | Nayak K P, Sadgrove M, Yalla R, Kien F L and Hakuta K 2018 J. Opt. 20 073001 |
[15] | Tong L M, Zi F, Guo X and Lou J 2012 Opt. Commun. 285 4641 |
[16] | Wu X and Tong L 2013 Nanophotonics 2 407 |
[17] | Solano P, Grover J A, Hoffman J E, Ravets S, Fatemi F K, Orozco L A and Rolston S L 2017 Adv. At. Mol. Opt. Phys. 66 439 |
[18] | Wu Y, Zeng X, Hou C L, Bai J and Yang G G 2008 Appl. Phys. Lett. 92 191112 |
[19] | Lim K S, Harun S W, Jasim A A and Ahmad H 2011 Microwave Opt. Technol. Lett. 53 1119 |
[20] | Jin W, Wang C, Xuan H F and Jin W 2013 Opt. Lett. 38 4277 |
[21] | Nodehi S, Mohammed W S, Ahmad H and Harun S W 2016 IEEE Photon. Technol. Lett. 28 1061 |
[22] | Choi H, Jeong Y and Oh K 2011 Opt. Lett. 36 484 |
[23] | Yu J H, Du Y, Xiao Y, Li H Z, Zhai Y F, Zhang J and Chen Z 2012 Opt. Express 20 17258 |
[24] | Zhao P, Shi L, Liu Y, Wang Z Q and Zhang X L 2013 Appl. Opt. 52 8834 |
[25] | Lin W, Liu B, Zhang H, Song B B, Yan D L, Miao Y P, Liu H F and Liu Y G 2015 IEEE Photon. Technol. Lett. 27 2339 |
[26] | Birks T A, Russell P S J and Culverhouse D O 1996 J. Lightwave Technol. 14 2519 |
[27] | Villatoro J, Monzón-Hernández D and Luna-Moreno D 2005 IEEE Photon. Technol. Lett. 17 1665 |
[28] | Chou S Y, Hsu K C, Chen N K, Liaw S K, Chih Y S, Lai Y and Chi S 2009 J. Lightwave Technol. 27 2208 |
[29] | Johnson S G, Bienstman P, Skorobogatiy M A, Ibanescu M, Lidorikis E and Joannopoulos J D 2002 Phys. Rev. E 66 066608 |
[30] | Zou C L, Sun F W, Dong C H, Xiao Y F, Ren X F, Lv L, Chen X D, Cui J M, Han Z F and Guo G C 2012 IEEE Photon. Technol. Lett. 24 434 |
[31] | Snyder A W 1970 IEEE Trans. Microwave Theory Techn. 18 383 |
[32] | Stiebeiner A, Garcia-Fernandez R and Rauschenbeutel A 2010 Opt. Express 18 22677 |
[33] | Chen Y, Ma Z, Yang Q and Tong L M 2008 Opt. Lett. 33 2565 |
[34] | Zou C L, Chen X D, Xiong X, Sun F W, Zou X B, Han Z F and Guo G C 2013 Phys. Rev. A 88 063806 |
[35] | Zhang P F, Cheng F, Wang X, Song L J, Zou C L, Li G and Zhang T C 2018 Opt. Express 26 31500 |
[36] | Love J D, Henry W M, Stewart W J, Black R J, Lacroix S and Gonthier F 1991 IEE Proc.-J: Optoelectron. 138 343 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|