Chin. Phys. Lett.  2020, Vol. 37 Issue (10): 103201    DOI: 10.1088/0256-307X/37/10/103201
ATOMIC AND MOLECULAR PHYSICS |
Active Learning Approach to Optimization of Experimental Control
Yadong Wu1, Zengming Meng2, Kai Wen2, Chengdong Mi2, Jing Zhang2*, and Hui Zhai1*
1Institute for Advanced Study, Tsinghua University, Beijing 100084, China
2State Key Laboratory of Quantum Optics and Quantum Optics Devices, and Institute of Opto-Electronics, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Cite this article:   
Yadong Wu, Zengming Meng, Kai Wen et al  2020 Chin. Phys. Lett. 37 103201
Download: PDF(1132KB)   PDF(mobile)(1112KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a general machine learning based scheme to optimize experimental control. The method utilizes the neural network to learn the relation between the control parameters and the control goal, with which the optimal control parameters can be obtained. The main challenge of this approach is that the labeled data obtained from experiments are not abundant. The central idea of our scheme is to use the active learning to overcome this difficulty. As a demonstration example, we apply our method to control evaporative cooling experiments in cold atoms. We have first tested our method with simulated data and then applied our method to real experiments. It is demonstrated that our method can successfully reach the best performance within hundreds of experimental runs. Our method does not require knowledge of the experimental system as a prior and is universal for experimental control in different systems.
Received: 28 July 2020      Published: 29 September 2020
PACS:  32.80.Hd (Auger effect)  
  37.10.De (Atom cooling methods)  
  07.05.Fb (Design of experiments)  
  07.05.-t (Computers in experimental physics)  
Fund: Supported by the Beijing Outstanding Young Scientist Program (HZ), the National Key R&D Program of China (Grant Nos. 2016YFA0301600, 2016YFA0301602, and 2018YFA0307600), and the National Natural Science Foundation of China (Grant Nos. 11734010 and 11804203).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/10/103201       OR      https://cpl.iphy.ac.cn/Y2020/V37/I10/103201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yadong Wu
Zengming Meng
Kai Wen
Chengdong Mi
Jing Zhang
and Hui Zhai
[1] Lin J, Lai Z Y and Li X 2020 Phys. Rev. A 101 052327
[2] Tranter A D, Slatyer H J, Hush M R, Leung A C, Everett J L, Paul K V, Vernaz-Gris P, Lam P K, Buchler B C and Campbell G T 2018 Nat. Commun. 9 4360
[3] Henson B M, Shin D K, Thomas K F, Ross J A, Hush M R, Hodgman S S and Truscott A G 2018 Proc. Natl. Acad. Sci. USA 115 13216
[4] Durand A, Wiesner T, Gardner M A, Robitaille E, Bilodeau A, Gagné C, De Koninck P and Lavoie-Cardinal F 2018 Nat. Commun. 9 5247
[5] Bukov M 2018 Phys. Rev. B 98 224305
[6] Nadell C C, Huang B, Malof J M and Padilla W J 2019 Opt. Express 27 27523
[7] An S, Fowler C, Zhang H et al. 2019 arXiv:1906.03387 [physics.optics]
[8] Lohani S, Knutson E M, Zhang W and Glasser R T 2019 OSA Continuum 2 3438
[9] An Z and Zhou D L 2019 Europhys. Lett. 126 60002
[10] Bukov M, Day A G R, Sels D, Weinberg P, Polkovnikov A and Mehta P 2018 Phys. Rev. X 8 031086
[11] Kokhanovskiy A, Bednyakova A, Kuprikov E, Ivanenko A, Dyatlov M, Lotkov D, Kobtsev S and Turitsyn S 2019 Opt. Lett. 44 003410
[12] Chen F, Chen J J, Wu L N, Liu Y C and You L 2019 Phys. Rev. A 100 041801
[13] Torlai G, Timar B, Van Nieuwenburg E P L, Levine H, Omran A, Keesling A, Bernien H, Greiner M, Vuletić V, Lukin M D, Melko R G and Endres M 2019 Phys. Rev. Lett. 123 230504
[14] Kokhanovskiy A, Ivanenko A, Kobtsev S, Smirnov S and Turitsyn S 2019 Sci. Rep. 9 2916
[15] Zhang X M, Wei Z, Asad R, Yang X C and Wang X 2019 npj Quantum Inf. 5 85
[16] Hou S C and Yi X X 2020 Quantum Inf. Process. 19 8
[17] Yao J, Bukov M and Lin L 2020 arXiv:2002.01068 [quant-ph]
[18] Schäfer F, Kloc M, Bruder C and Lörch N 2020 arXiv:2002.08376 [quant-ph]
[19] Palmieri A M, Kovlakov E, Bianchi F, Yudin D, Straupe S, Biamonte J D and Kulik S 2020 npj Quantum Inf. 6 20
[20] Lu H, Xu H, Zhao J and Hou D 2020 Sci. Rep. 10 116
[21] Meng F and Dudley J M 2020 Light: Sci. & Appl. 9 26
[22] Wigley P B, Everitt P J, van den Hengel A, Bastian J W, Sooriyabandara M A, McDonald G D, Hardman K S, Quinlivan C D, Manju P, Kuhn C C N, Petersen I R, Luiten A N, Hope J J, Robins N P and Hush M R 2016 Sci. Rep. 6 25890
[23] Barker A J, Style H, Luksch K, Sunami S, Garrick D, Hill F, Foot C J and Bentine E 2020 Mach. Learn.: Sci. Technol. 1 015007
[24] Nakamura I, Kanemura A, Nakaso T, Yamamoto R and Fukuhara T 2019 Opt. Express 27 20435
[25] Davletov E T, Tsyganok V V, Khlebnikov V A, Pershin D A, Shaykin D V and Akimov A V 2020 Phys. Rev. A 102 011302
[26] Settles B 2012 Synthesis Lectures on Artificial Intelligence and Machine Learning 6 1
[27] Rubens N, Elahi M, Sugiyama M and Kaplan D 2015 Recommender Systems Handbook (Boston: Springer) pp 809–846
[28] Dai C and Glotzer S C 2020 J. Phys. Chem. B 124 1275
[29] Noé F 2018 arXiv:1812.07669 [physics.chem-ph]
[30] Jiang J, Sivak D A and Thomson M 2019 arXiv:1903.10474 [cond-mat.dis-nn]
[31] Casares P A M and Martin-Delgado M A 2020 New J. Phys. 22 073026
[32] Svendsen D H, Martino L and Camps-Valls G 2020 Pattern Recognit. 100 107103
[33] Ding Y, Martín-Guerrero J D, Sanz M, Magdalena-Benedicto R, Chen X and Solano E 2020 Phys. Rev. Lett. 124 140504
[34] Yao J, Wu Y, Koo J, Yan B and Zhai H 2020 Phys. Rev. Res. 2 013287
[35] Smith J S, Nebgen B, Lubbers N, Isayev O and Roitberg A E 2018 J. Chem. Phys. 148 241733
[36] Gubaev K, Podryabinkin E V, Hart G L W and Shapeev A V 2019 Comput. Mater. Sci. 156 148
[37] Musil F, Willatt M J, Langovoy M A and Ceriotti M 2019 J. Chem. Theory Comput. 15 906
[38] Zhang L, Lin D Y, Wang H, Car R and W E 2019 Phys. Rev. Mater. 3 023804
[39] Gastegger M and Marquetand P 2018 arXiv:1812.07676 [physics.chem-ph]
[40] Sivaraman G, Krishnamoorthy A N, Baur M, Holm C, Stan M, Csányi G, Benmore C and Mayagoitia V 2019 arXiv:1910.10254 [cond-mat.mtrl-sci]
[41] Teichert G H, Natarajan A R, Van der Ven A and Garikipati K 2020 arXiv:2002.02305 [cs.LG]
[42] Lin Q, Zhang Y, Zhao B and Jiang B 2020 J. Chem. Phys. 152 154104
[43] Malkiel I, Mrejen M, Nagler A, Arieli U, Wolf L and Suchowski H 2018 Light: Sci. & Appl. 7 60
[44]Ketterle W and Druten N J V 1996 Adv. At. Mol. Opt. Phys. 37 181
[45] Hess H F 1986 Phys. Rev. B 34 3476
[46] Pereira Dos Santos F, Léonard J, Wang J, Barrelet C J, Perales F, Rasel E, Unnikrishnan C S, Leduc M and Cohen-Tannoudji C 2001 Phys. Rev. Lett. 86 3459
[47] Verkerk P, Lounis B, Salomon C, Cohen-Tannoudji C, Courtois J Y and Grynberg G 1992 Phys. Rev. Lett. 68 3861
[48] Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687
[49] Bradley C C, Sackett C A and Hulet R G 1997 Phys. Rev. Lett. 78 985
[50] Phillips W D 1998 Rev. Mod. Phys. 70 721
[51] Davis K B, Mewes M O and Ketterle W 1995 Appl. Phys. B 60 155
[52] Fried D G, Killian T C, Willmann L, Landhuis D, Moss S C, Kleppner D and Greytak T J 1998 Phys. Rev. Lett. 81 3811
[53]Greytak T J 1995 Bose–Einstein Condensation ed Griffin A, Snoke D W and Stringari S (Cambridge: Cambridge University Press) p 131
[54] Chu S, Cohen-Tannoudji C and Phillips W D 1998 Rev. Mod. Phys. 70 685
[55] Luiten O J, Reynolds M W and Walraven J T M 1996 Phys. Rev. A 53 381
[56] Holland M J, DeMarco B and Jin D S 2000 Phys. Rev. A 61 053610
[57] Luo L, Clancy B, Joseph J, Kinast J, Turlapov A and Thomas J E 2006 New J. Phys. 8 213
[58] Fu Z, Wang P, Chai S, Huang L and Zhang J 2011 Phys. Rev. A 84 043609
[59] Xiong D, Wang P, Fu Z, Chai S and Zhang J 2010 Chin. Opt. Lett. 8 627
[60]Chai S, Wang P, Fu Z, Huang L and Zhang J 2012 Acta Sin. Quantum Opt. 18 171
[61]McNaught A D and Wilkinson A 1997 IUPAC Compendium of Chemical Terminology 2nd edn (Oxford: Blackwell Science)
[62] Verhoeven J W 1996 Pure Appl. Chem. 68 2223
Related articles from Frontiers Journals
[1] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 103201
[2] Zhenqi Liu, Qing Liu, Yulong Ma, Fuyang Zhou, and Yizhi Qu. Multiple Auger Decay Following Xe$^{+}$ (4$p_{3/2}^{-1}$) Ionization[J]. Chin. Phys. Lett., 2021, 38(2): 103201
[3] CAO Xiang-Nian, SU Mao-Gen, SUN Dui-Xiong, FU Yan-Biao, DONG Chen-Zhong. Theoretical Analysis of 4f and 5p Inner-Shell Excitations of W-W3+ Ions[J]. Chin. Phys. Lett., 2012, 29(11): 103201
[4] WANG Xiang-Li, DONG Chen-Zhong, XIE Lu-You, SHI Ying-Long, SABER Ismail Abdalla, ZHOU Wei-Dong. The Radiative and Auger Decay Properties of K-Shell Ionized Np Ions[J]. Chin. Phys. Lett., 2012, 29(10): 103201
[5] DING Xiao-Bin, DONG Chen-Zhong, Gerard O'Sullivan. Shake-up Processes in the 3d Photoionization of Sr I and the Subsequent Auger Decay[J]. Chin. Phys. Lett., 2012, 29(6): 103201
[6] WANG Xiang-Li,DONG Chen-Zhong**,SU Mao-Gen,KOIKE Fumihiro. Fluorescence and Auger Decay Properties of the Core-Excited F-Like Ions from Ne to Kr[J]. Chin. Phys. Lett., 2012, 29(4): 103201
[7] Mukhtar Ahmed Rana* . Radiation-Induced Nano-Explosions at the Solid Surface: Near Surface Radiation Damage in CR-39 Polymer[J]. Chin. Phys. Lett., 2011, 28(8): 103201
[8] REN Lin-Mao, WANG You-Yan, LI Dong-Dong, YUAN Zhen-Sheng, ZHU Lin-Fan** . Inner-Shell Excitations of 2p Electrons of Argon Investigated by Fast Electron Impact with High Resolution[J]. Chin. Phys. Lett., 2011, 28(5): 103201
[9] YANG Ning-Xuan, DONG Chen-Zhong, JIANG Jun. Theoretical Study on Inner Shell Electron Impact Excitation of Lithium[J]. Chin. Phys. Lett., 2009, 26(6): 103201
[10] Mukhtar Ahmed Rana. Etchability of Latent Fission Fragment Tracks in CR-39[J]. Chin. Phys. Lett., 2007, 24(11): 103201
[11] ZHANG Deng-Hong, DONG Chen-Zhong, Fumihiro Koike. Theoretical Investigation of Decay Process in a Doubly Excited 2s2 1S0 State of He-Like Ions[J]. Chin. Phys. Lett., 2006, 23(8): 103201
[12] Mukhtar A. Rana. Formation of Charged Particle Tracks in Solids[J]. Chin. Phys. Lett., 2006, 23(6): 103201
[13] LIANG Gui-Yun, ZHAO Gang. Photoionization of Ge13 in the Inner-Shell 2p Excitation Energy Region[J]. Chin. Phys. Lett., 2006, 23(1): 103201
[14] YANG Zhi-Hu, DU Shu-Bin, CHANG Hong-Wei, ZHANG Xiao-An, SU Hong, ZHANG Yan-Ping, SONG Zhang-Yong. Oscillator Strength for n=2 Transitions in Highly Ionized Sulfur[J]. Chin. Phys. Lett., 2005, 22(5): 103201
[15] LIU Yong, ZOU Yu, FANG Quan-Yu, XU Ya-Qiong. Relativistic Calculation of Dielectronic Recombination on the C4+ Ground State[J]. Chin. Phys. Lett., 2001, 18(6): 103201
Viewed
Full text


Abstract