GENERAL |
|
|
|
|
Chiral State Conversion in a Levitated Micromechanical Oscillator with ${\boldsymbol In~Situ}$ Control of Parameter Loops |
Peiran Yin1,2,3, Xiaohui Luo4, Liang Zhang1,2,3, Shaochun Lin1,2,3, Tian Tian1,2,3, Rui Li1,2,3, Zizhe Wang1,2,3, Changkui Duan1,2,3, Pu Huang4*, and Jiangfeng Du1,2,3* |
1Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China 2CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China 3Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China 4National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
|
|
Cite this article: |
Peiran Yin, Xiaohui Luo, Liang Zhang et al 2020 Chin. Phys. Lett. 37 100301 |
|
|
Abstract Physical systems with gain and loss can be described by a non-Hermitian Hamiltonian, which is degenerated at the exceptional points (EPs). Many new and unexpected features have been explored in the non-Hermitian systems with a great deal of recent interest. One of the most fascinating features is that chiral state conversion appears when one EP is encircled dynamically. Here, we propose an easy-controllable levitated microparticle system that carries a pair of EPs and realize slow evolution of the Hamiltonian along loops in the parameter plane. Utilizing the controllable rotation angle, gain and loss coefficients, we can control the structure, size and location of the loops in situ. We demonstrate that, under the joint action of topological structure of energy surfaces and nonadiabatic transitions, the chiral behavior emerges both along a loop encircling an EP and even along a straight path away from the EP. This work broadens the range of parameter space for the chiral state conversion, and proposes a useful platform to explore the interesting properties of exceptional points physics.
|
|
Received: 04 June 2020
Published: 29 September 2020
|
|
PACS: |
03.65.-w
|
(Quantum mechanics)
|
|
84.71.Ba
|
(Superconducting magnets; magnetic levitation devices)
|
|
45.80.+r
|
(Control of mechanical systems)
|
|
11.30.Er
|
(Charge conjugation, parity, time reversal, and other discrete symmetries)
|
|
|
Fund: Supported by the Fundamental Research Funds for the Central Universities (Grant No. WK2030000032), the National Key R&D Program of China (Grant No. 2018YFA0306600), the CAS (Grant Nos. GJJSTD20170001 and QYZDY-SSW-SLH004), and Anhui Initiative in Quantum Information Technologies (Grant No. AHY050000). |
|
|
[1] | El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Christodoulides D N 2018 Nat. Phys. 14 11 |
[2] | Miri M A and Alù A 2019 Science 363 eaar7709 |
[3] | Özdemir Ş K, Rotter S, Nori F and Yang L 2019 Nat. Mater. 18 783 |
[4] | Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 |
[5] | Bender C M 2007 Rep. Prog. Phys. 70 947 |
[6] | Rotter I 2009 J. Phys. A 42 153001 |
[7] | Heiss W D 2012 J. Phys. A 45 444016 |
[8] | Heiss W D and Steeb W H 1991 J. Math. Phys. 32 3003 |
[9] | Heiss W D 2000 Phys. Rev. E 61 929 |
[10] | Jing H, Özdemir Ş K, Geng Z, Zhang J, Lü X Y, Peng B, Yang L and Nori F 2015 Sci. Rep. 5 9663 |
[11] | Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901 |
[12] | Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F and Scherer A 2013 Nat. Mater. 12 108 |
[13] | Hodaei H, Miri M A, Heinrich M, Christodoulides D N and Khajavikhan M 2014 Science 346 975 |
[14] | Feng L, Wong Z J, Ma R M, Wang Y and Zhang X 2014 Science 346 972 |
[15] | Zhen B, Hsu C W, Igarashi Y, Lu L, Kaminer I, Pick A, Chua S L, Joannopoulos J D and Soljačić M 2015 Nature 525 354 |
[16] | Wiersig J 2014 Phys. Rev. Lett. 112 203901 |
[17] | Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N and Khajavikhan M 2017 Nature 548 187 |
[18] | Chen W, Özdemir Ş K, Zhao G, Wiersig J and Yang L 2017 Nature 548 192 |
[19] | Zhang M, Sweeney W, Hsu C W, Yang L, Stone A D and Jiang L 2019 Phys. Rev. Lett. 123 180501 |
[20] | Dembowski C, Gräf H D, Harney H L, Heine A, Heiss W D, Rehfeld H and Richter A 2001 Phys. Rev. Lett. 86 787 |
[21] | Mailybaev A A, Kirillov O N and Seyranian A P 2005 Phys. Rev. A 72 014104 |
[22] | Lee S B, Yang J, Moon S, Lee S Y, Shim J B, Kim S W, Lee J H and An K 2009 Phys. Rev. Lett. 103 134101 |
[23] | Gao T, Estrecho E, Bliokh K Y, Liew T C H, Fraser M D, Brodbeck S, Kamp M, Schneider C, Höfling S, Yamamoto Y, Nori F, Kivshar Y S, Truscott A G, Dall R G and Ostrovskaya E A 2015 Nature 526 554 |
[24] | Uzdin R, Mailybaev A and Moiseyev N 2011 J. Phys. A 44 435302 |
[25] | Berry M V and Uzdin R 2011 J. Phys. A 44 435303 |
[26] | Gilary I, Mailybaev A A and Moiseyev N 2013 Phys. Rev. A 88 010102(R) |
[27] | Milburn T J, Doppler J, Holmes C A, Portolan S, Rotter S and Rabl P 2015 Phys. Rev. A 92 52124 |
[28] | Hassan A U, Zhen B, Soljačić M, Khajavikhan M and Christodoulides D N 2017 Phys. Rev. Lett. 118 93002 |
[29] | Wang H, Lang L J and Chong Y D 2018 Phys. Rev. A 98 12119 |
[30] | Doppler J, Mailybaev A A, Böhm J, Kuhl U, Girschik A, Libisch F, Milburn T J, Rabl P, Moiseyev N and Rotter S 2016 Nature 537 76 |
[31] | Xu H, Mason D, Jiang L and Harris J G E 2016 Nature 537 80 |
[32] | Yoon J W, Choi Y, Hahn C, Kim G, Song S H, Yang K Y, Lee J Y, Kim Y, Lee C S, Shin J K, Lee H S and Berini P 2018 Nature 562 86 |
[33] | Zhang X L, Wang S, Hou B and Chan C T 2018 Phys. Rev. X 8 021066 |
[34] | Liu W, Wu Y, Duan C K, Rong X and Du J 2020 arXiv:2002.06798v1 [quant-ph] |
[35] | Hassan A U, Galmiche G L, Harari G, LiKamWa P, Khajavikhan M, Segev M and Christodoulides D N 2017 Phys. Rev. A 96 052129 |
[36] | Hassan A U, Galmiche G L, Harari G, LiKamWa P, Khajavikhan M, Segev M and Christodoulides D N 2017 Phys. Rev. A 96 069908 |
[37] | Zhang X L, Song J F, Chan C T and Sun H B 2019 Phys. Rev. A 99 063831 |
[38] | Geim A K, Simon M D, Boamfa M I and Heflinger L O 1999 Nature 400 323 |
[39] | Slezak B R, Lewandowski C W, Hsu J F and D'Urso B 2018 New J. Phys. 20 063028 |
[40] | Zheng D, Leng Y, Kong X, Li R, Wang Z, Luo X, Zhao J, Duan C K, Huang P, Du J, Carlesso M and Bassi A 2020 Phys. Rev. Res. 2 013057 |
[41] | Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 93902 |
[42] | Nenciu G and Rasche G 1992 J. Phys. A 25 5741 |
[43] | Gong J and Wang Q 2019 Phys. Rev. A 99 012107 |
[44] | Demange G and Graefe E M 2012 J. Phys. A 45 025303 |
[45] | Zhang X L and Chan C T 2019 Commun. Phys. 2 63 |
[46] | Longhi S 2019 Phys. Rev. Lett. 122 237601 |
[47] | Okuma N, Kawabata K, Shiozaki K and Sato M 2020 Phys. Rev. Lett. 124 86801 |
[48] | Xiao L, Deng T S, Wang K K, Zhu G Y, Wang Z, Yi W and Xue P 2020 Nat. Phys. 16 761 |
[49] | Yang K, Zhou L, Ma W, Kong X, Wang P, Qin X, Rong X, Wang Y, Shi F, Gong J and Du J 2019 Phys. Rev. B 100 085308 |
[50] | Li J, Harter A K, Liu J, de Melo L, Joglekar Y N and Luo L 2019 Nat. Commun. 10 855 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|