Chin. Phys. Lett.  2020, Vol. 37 Issue (10): 100501    DOI: 10.1088/0256-307X/37/10/100501
GENERAL |
Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules
Wei Wang1,2, Ruoxia Yao1*, and Senyue Lou3
1School of Computer Science, Shaanxi Normal University, Xi'an 710119, China
2Information and Education Technology Center, Xi'an University of Finance and Economics, Xi'an 710062, China
3School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Cite this article:   
Wei Wang, Ruoxia Yao, and Senyue Lou 2020 Chin. Phys. Lett. 37 100501
Download: PDF(3095KB)   PDF(mobile)(3086KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Traveling wave solutions have been well studied for various nonlinear systems. However, for high order nonlinear physical models, there still exist various open problems. Here, travelling wave solutions to the well-known fifth-order nonlinear physical model, the Sawada–Kotera equation, are revisited. Abundant travelling wave structures including soliton molecules, soliton lattice, kink-antikink molecules, peak-plateau soliton molecules, few-cycle-pulse solitons, double-peaked and triple-peaked solitons are unearthed.
Received: 24 June 2020      Published: 29 September 2020
PACS:  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.35.Sb (Solitons; BGK modes)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11975131, 11435005 and 11471004), and K. C. Wong Magna Fund in Ningbo University.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/10/100501       OR      https://cpl.iphy.ac.cn/Y2020/V37/I10/100501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei Wang
Ruoxia Yao
and Senyue Lou
[1] Ye L J and Lin J 2004 Commun. Theor. Phys. 41 481
[2] Bilge A H 1996 J. Phys. A 29 4967
[3] Fokas A S and Liu Q M 1996 Phys. Rev. Lett. 77 2347
[4] Lamb K 1996 J. Phys. Oceanogr. 26 2712
[5] Grimshaw R, Pelinovsky E and Poloukhina O 2002 Nonlinear Processes Geophys. 9 221
[6] Karczewska A, Rozmej P and Infeld E 2014 Phys. Rev. E 90 012907
[7] Kodama Y 1985 Phys. Lett. A 107 245
[8]Caudrey P J, Dodd R K and Gibbon J D 1976 Proc. R. Soc. A 351 407
[9] Sawada K and Kotera T 1974 Prog. Theor. Phys. 51 1355
[10] Fuchssteiner B and Oevel W 1982 J. Math. Phys. 23 358
[11] Satsuma J and Kaup D J 1977 J. Phys. Soc. Jpn. 43 692
[12] Ito M 1980 J. Phys. Soc. Jpn. 49 771
[13] Hirota R and Ito M 1981 J. Phys. Soc. Jpn. 50 338
[14] Rogers C, Schief W K and Stallybrass M P 1995 Int. J. Non-Linear Mech. 30 223
[15] Leble S B and Ustinov N V 1994 Inverse Probl. 10 617
[16] Tsujimoto S and Hirota R 1996 J. Phys. Soc. Jpn. 65 2797
[17] Zhang Z, Yang X Y and Li B 2020 Appl. Math. Lett. 103 106168
[18] Dong J J, Li B and Yuen M W 2020 Commun. Theor. Phys. 72 025002
[19] Mao H, Liu Q P and Xue L L 2018 J. Nonlinear Math. Phys. 25 375
[20] Zhang Z, Yang S X and Li B 2020 Chin. Phys. Lett. 36 120501
[21] Lou S Y 1993 Phys. Lett. A 175 23
[22] Lou S Y, Ruan H Y, Chen W Z, Wang Z L and Chen L L 1994 Chin. Phys. Lett. 11 593
[23] Zhao Q L, Jia M and Lou S Y 2019 Commun. Theor. Phys. 71 1149
[24] Stratmann M, Pagel T and Mitschke F 2005 Phys. Rev. Lett. 95 143902
[25] Herink G, Kurtz F, Jalali B, Solli D R and Ropers C 2017 Science 356 50
[26] Krupa K, Nithyanandan K, Andral U, Tchofo-Dinda P and Grelu P 2017 Phys. Rev. Lett. 118 243901
[27] Liu X M, Yao X K and Cui Y D 2018 Phys. Rev. Lett. 121 023905
[28] Wu Y H, Liu C, Yang Z Y and Yang W L 2020 Chin. Phys. Lett. 37 040501
[29] Lakomy K, Nath R and Santos L 2012 Phys. Rev. A 86 013610
[30] Lou S Y 2020 J. Phys. Commun. 4 041002
[31] Cui C J, Tang X Y and Cui Y J 2020 Appl. Math. Lett. 102 106109
[32] Xu D H and Lou S Y 2020 Acta Phys. Sin. 69 014208 (in Chinese)
[33] Yan Z W and Lou S Y 2020 Appl. Math. Lett. 104 106271
[34] Zhou Y and Ma W X 2017 J. Math. Phys. 58 101511
[35] Leblond H and Mihalache D 2013 Phys. Rep. 523 61
[36] Leblond H and Mihalache D 2009 Phys. Rev. A 79 063835
[37] Bugay A N and Sazonov S V 2004 J. Opt. B: Quantum Semiclass. Opt. 6 328
[38] Sun Y Y and Wu H 2013 Phys. Scr. 88 065001
[39] Lind A J, Kowligy A, Timmers H, Cruz F C, Nader N, Silfies M C, Allison T K and Diddams S A 2020 Phys. Rev. Lett. 124 133904
[40] Jin X W and Lin J 2020 J. Magn. Magn. Mater. 502 166590
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 100501
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 100501
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 100501
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 100501
[5] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 100501
[6] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 100501
[7] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 100501
[8] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 100501
[9] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 100501
[10] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 100501
[11] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 100501
[12] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 100501
[13] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 100501
[14] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 100501
[15] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 100501
Viewed
Full text


Abstract