CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Superconductivity, Pair Density Wave, and Néel Order in Cuprates |
Li-Han Chen1, Da Wang1,2, Yi Zhou3,4,2, Qiang-Hua Wang1,2** |
1National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093 2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 3Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 4CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
Li-Han Chen, Da Wang, Yi Zhou et al 2020 Chin. Phys. Lett. 37 017403 |
|
|
Abstract We investigate in underdoped cuprates possible coexistence of the superconducting order at zero momentum and pair density wave (PDW) at momentum ${\boldsymbol Q}=(\pi, \pi)$ in the presence of a Néel order. By symmetry, the d-wave uniform singlet pairing $dS_0$ can coexist with the d-wave triplet PDW $dT_{\boldsymbol Q}$, and the p-wave singlet PDW $pS_{\boldsymbol Q}$ can coexist with the p-wave uniform triplet $pT_0$. At half filling, we find that the novel $pS_{\boldsymbol Q}+pT_0$ state is energetically more favorable than the $dS_0+dT_{\boldsymbol Q}$ state. At finite doping, however, the $dS_0+dT_{\boldsymbol Q}$ state is more favorable. In both types of states, the variational triplet parameters $dT_{\boldsymbol Q}$ and $pT_0$ are of secondary significance. Our results point to a fully symmetric $Z_2$ quantum spin liquid with spinon Fermi surface in proximity to the Néel order at zero doping, which may not be adiabatically connected to the d-wave singlet superconductivity at finite doping with intertwining d-wave triplet PDW fluctuations and spin moment fluctuations. The results are obtained by variational quantum Monte Carlo simulations.
|
|
Received: 16 December 2019
Published: 29 December 2019
|
|
PACS: |
74.20.-z
|
(Theories and models of superconducting state)
|
|
74.20.Rp
|
(Pairing symmetries (other than s-wave))
|
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant Nos. 2016YFA0300401 and 2016YFA0300202, the National Natural Science Foundation of China under Grant Nos. 11574134, 11874205 and 11774306, and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB28000000). |
|
|
[1] | Anderson P W 1987 Science 235 1196 | [2] | Zhang F C and Rice T M 1988 Phys. Rev. B 37 3759 | [3] | Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17 | [4] | Baskaran G, Zou Z and Anderson P W 1987 Solid State Commun. 63 973 | [5] | Gros C 1988 Phys. Rev. B 38 931 | [6] | Kotliar G and Liu J 1988 Phys. Rev. B 38 5142 | [7] | Wang Q H, Wang Z D, Chen Y and Zhang F C 2006 Phys. Rev. B 73 092507 | [8] | Affleck I, Zou Z, Hsu T and Anderson P W 1988 Phys. Rev. B 38 745 | [9] | Wen X G 2002 Phys. Rev. B 65 165113 | [10] | Wen X G 2004 Quantum Field Theory of Many Body Systems (New York: Oxford University Press) | [11] | Piazza B D, Mourigal M, Christensen N B, Nilsen G J, Tregenna-Piggott P, Perring T G, Enderle M, McMorrow D F, Ivanov D A and Ronnow H M 2015 Nat. Phys. 11 62 | [12] | Headings N S, Hayden S M, Coldea R and Perring T G 2010 Phys. Rev. Lett. 105 247001 | [13] | Shao H, Qin Y Q, Capponi S, Chesi S, Meng Z Y and Sandvik A W 2017 Phys. Rev. X 7 041072 | [14] | Yu S L, Wang W, Dong Z Y, Yao Z J and Li J X 2018 Phys. Rev. B 98 134410 | [15] | Sandvik A W and Singh R R P 2001 Phys. Rev. Lett. 86 528 | [16] | Powalski M, Schmidt K and Uhrig G 2018 SciPost Phys. 4 001 | [17] | Lu Y M, Xiang T and Lee D H 2014 Nat. Phys. 10 634 | [18] | Gputa A and Sa D 2016 Eur. Phys. J. B 89 24 | [19] | Liu Y H, Wang W S, Wang Q H, Zhang F C and Rice T M 2017 Phys. Rev. B 96 014522 | [20] | Shen K M, Yoshida T, Lu D H, Ronning F, Armitage N P et al 2004 Phys. Rev. B 69 054503 | [21] | Tanaka K, Lee W S, Lu D H, Fujimori A, Fujii T et al 2006 Science 314 1910 | [22] | Vishik I M, Hashimoto M, He R H, Lee W S, Schmitt F, Lu D, Moore R G, Zhang C, Meevasana W, Sasagawa T, Uchida S, Fujita K, Ishida S, Ishikado M, Yoshida Y, Eisaki H, Hussain Z, Devereaux T P and Shen Z X 2012 Proc. Natl. Acad. Sci. USA 109 18332 | [23] | Peng Y, Meng J, Mou D, He J, Zhao L, Wu Y, Liu G, Dong X, He S, Zhang J, Wang X, Peng Q, Wang Z, Zhang S, Yang F, Chen C, Xu Z, Lee T K and Zhou X J 2013 Nat. Commun. 4 2459 | [24] | Razzoli E, Drachuck G, Keren A, Radovic M, Plumb N C, Chang J, Huang Y B, Ding H, Mesot J and Shi M 2013 Phys. Rev. Lett. 110 047004 | [25] | Read N and Green D 2000 Phys. Rev. B 61 10267 | [26] | Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 | [27] | Himeda A and Ogata M 1999 Phys. Rev. B 60 R9935 | [28] | Himeda A, Kato T and Ogata M 2002 Phys. Rev. Lett. 88 117001 | [29] | Paramekanti A, Randeria M and Trivedi N 2001 Phys. Rev. Lett. 87 217002 | [30] | Paramekanti A, Randeria M and Trivedi N 2004 Phys. Rev. B 70 054504 | [31] | Tan F and Wang Q H 2008 Phys. Rev. Lett. 100 117004 | [32] | Edegger B, Muthukumar V N and Gros C 2007 Adv. Phys. 56 927 | [33] | Umrigar C J and Filippi C 2005 Phys. Rev. Lett. 94 150201 | [34] | Sorella S 2005 Phys. Rev. B 71 241103 | [35] | Morita S, Kaneko R and Imada M 2015 J. Phys. Soc. Jpn. 84 024720 | [36] | Yokoyama H and Shiba H 1987 J. Phys. Soc. Jpn. 56 1490 | [37] | Lee T K and Feng S P 1988 Phys. Rev. B 38 11809 | [38] | Liang S, Doucot B and Anderson P W 1988 Phys. Rev. Lett. 61 365 | [39] | Weng Z Y, Zhou Y and Muthukumar V N 2005 Phys. Rev. B 72 014503 | [40] | Trivedi N and Cepeley D M 1989 Phys. Rev. B 40 2737(R) | [41] | Sandvik A W 1997 Phys. Rev. B 56 11678 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|