Chin. Phys. Lett.  2020, Vol. 37 Issue (1): 017402    DOI: 10.1088/0256-307X/37/1/017402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Observation of Coulomb Gap and Enhanced Superconducting Gap in Nano-Sized Pb Islands Grown on SrTiO$_{3}$
Yonghao Yuan1,2, Xintong Wang1,2, Canli Song1,2, Lili Wang1,2, Ke He1,2, Xucun Ma1,2, Hong Yao1,2,3, Wei Li1,2**, Qi-Kun Xue1,2,4**
1State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084
2Collaborative Innovation Center of Quantum Matter, Beijing 100084
3Institute for Advanced Study, Tsinghua University, Beijing 100084
4Beijing Academy of Quantum Information Sciences, Beijing 100193
Cite this article:   
Yonghao Yuan, Xintong Wang, Canli Song et al  2020 Chin. Phys. Lett. 37 017402
Download: PDF(1746KB)   PDF(mobile)(2026KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report high-resolution scanning tunneling microscopy (STM) study of nano-sized Pb islands grown on SrTiO$_{3}$, where three distinct types of gaps with different energy scales are revealed. At low temperature, we find that the superconducting gap (${\it\Delta}_{\rm s}$) in nano-sized Pb islands is significantly enhanced from the one in bulk Pb, while there is no essential change in superconducting transition temperature $T_{\rm c}$, giving rise to a larger BCS ratio 2${\it\Delta}_{\rm s}/k_{_{\rm B}}T_{\rm c} \sim 8.31$ and implying stronger electron-phonon coupling. The stronger coupling can originate from the interface electron-phonon interactions between Pb islands and SrTiO$_{3}$. As the superconducting gap is totally suppressed under applied magnetic field, the Coulomb gap with apparent V-shape emerges. Moreover, the size of Coulomb gap (${\it\Delta}_{\rm C}$) depends on the lateral size of Pb islands ($R$) with ${\it\Delta}_{\rm C}\sim 1/R^{0.35}$, indicating that quantum size effect can significantly influence electronic correlations. Our experimental results shall shed important light on the interplay among superconductivity, quantum size effect and correlations in nano-sized strong-coupling superconductors.
Received: 10 December 2019      Published: 23 December 2019
PACS:  74.78.-w (Superconducting films and low-dimensional structures)  
  74.78.Na (Mesoscopic and nanoscale systems)  
  74.55.+v (Tunneling phenomena: single particle tunneling and STM)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.23.Hk (Coulomb blockade; single-electron tunneling)  
Fund: Supported by the National Natural Science Foundation under Grant Nos. 11674191 and 11825404, the National Key Program for S&T Research and Development under Grant No. 2016YFA0301002, and the Beijing Advanced Innovation Center for Future Chip (ICFC). W.L. was also supported by Beijing Young Talents Plan.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/1/017402       OR      https://cpl.iphy.ac.cn/Y2020/V37/I1/017402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yonghao Yuan
Xintong Wang
Canli Song
Lili Wang
Ke He
Xucun Ma
Hong Yao
Wei Li
Qi-Kun Xue
[1]Cohen R W and Abeles B 1968 Phys. Rev. 168 444
[2]Bose S and Ayyub P 2014 Rep. Prog. Phys. 77 116503
[3]Watson J H P 1970 Phys. Rev. B 2 1282
[4]Eliashberg G 1960 Sov. Phys.-JETP 11 696
[5]McMillan W 1968 Phys. Rev. 167 331
[6]Guo Y et al 2004 Science 306 1915
[7]Eom D et al 2006 Phys. Rev. Lett. 96 027005
[8]Bose S et al 2009 J. Phys.: Condens. Matter 21 205702
[9]Vlaic S et al 2017 Nat. Commun. 8 14549
[10]Anderson P W 1959 J. Phys. Chem. Solids 11 26
[11]Voisin C et al 2000 Phys. Rev. Lett. 85 2200
[12]Han M Y et al 2007 Phys. Rev. Lett. 98 206805
[13]Wang K et al 2009 Phys. Rev. Lett. 102 076801
[14]Wang Q Y et al 2012 Chin. Phys. Lett. 29 037402
[15]Ginzburg V L 1964 Phys. Lett. 13 101
[16]Cohen M H and Douglass D H 1967 Phys. Rev. Lett. 19 118
[17]Dynes R C et al 1978 Phys. Rev. Lett. 41 1509
[18]Kastner M A 1992 Rev. Mod. Phys. 64 849
[19]Efros A and Shklovskii B 1975 J. Phys. C 8 L49
[20]Butko V Y et al 2000 Phys. Rev. Lett. 84 1543
[21]Massey J G and Lee M 1995 Phys. Rev. Lett. 75 4266
[22]Lindhard J 1954 K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 28 8
[23]Liebsch A 1993 Phys. Rev. B 48 11317
[24]Chen T et al 2012 Phys. Rev. B 86 045135
[25]Brun C et al 2012 Phys. Rev. Lett. 108 126802
[26]Bean C and Livingston J 1964 Phys. Rev. Lett. 12 14
[27]Nishio T et al 2008 Phys. Rev. Lett. 101 167001
[28]Fischer Ø et al 2007 Rev. Mod. Phys. 79 353
[29]Leavens C R and Fenton E W 1981 Phys. Rev. B 24 5086
[30]Sacepe B et al 2010 Nat. Commun. 1 140
[31]Bose S et al 2010 Nat. Mater. 9 550
Related articles from Frontiers Journals
[1] Zi-Tao Zhang, Yu-Jie Qiao, Ting-Na Shao, Qiang Zhao, Xing-Yu Chen, Mei-Hui Chen, Fang-Hui Zhu, Rui-Fen Dou, Hai-Wen Liu, Chang-Min Xiong, and Jia-Cai Nie. Anomalous Metallic State Driven by Magnetic Field at the LaAlO$_{3}$/KTaO$_{3}$ (111) Interface[J]. Chin. Phys. Lett., 2023, 40(3): 017402
[2] Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$[J]. Chin. Phys. Lett., 2023, 40(1): 017402
[3] Dong Li, Yue Liu, Zouyouwei Lu, Peiling Li, Yuhang Zhang, Sheng Ma, Jiali Liu, Jihu Lu, Hua Zhang, Guangtong Liu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Quasi-Two-Dimensional Nature of High-$T_{\rm c}$ Superconductivity in Iron-Based (Li,Fe)OHFeSe[J]. Chin. Phys. Lett., 2022, 39(12): 017402
[4] Ziqin Yang, Shichun Huang, Yuan He, Xiangyang Lu, Hao Guo, Chunlong Li, Xiaofei Niu, Pingran Xiong, Yukun Song, Andong Wu, Bin Xie, Zhiming You, Qingwei Chu, Teng Tan, Feng Pan, Ming Lu, Didi Luo, Junhui Zhang, Shenghu Zhang, and Wenlong Zhan. Low-Temperature Baking Effect of the Radio-Frequency Nb$_{3}$Sn Thin Film Superconducting Cavity[J]. Chin. Phys. Lett., 2021, 38(9): 017402
[5] Ying Xiang, Qing Li, Yueying Li, Huan Yang, Yuefeng Nie, and Hai-Hu Wen. Physical Properties Revealed by Transport Measurements for Superconducting Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$ Thin Films[J]. Chin. Phys. Lett., 2021, 38(4): 017402
[6] Jian Xing, Li-Tian Wang, Xiao-Xin Gao, Xue-Lian Liang, Kai-Yong He, Ting Xue, Sheng-Hui Zhao, Jin-Li Zhang, Ming He, Xin-Jie Zhao, Shao-Lin Yan, Pei Wang, and Lu Ji. Erratum: Growth of TlBa$_{2}$Ca$_{2}$Cu$_{3}$O$_{9}$ Epitaxial Thin Films by Two-Step Method in Argon [Chin. Phys. Lett. 36 (2019) 057401][J]. Chin. Phys. Lett., 2021, 38(2): 017402
[7] Yang Ma, Jiasen Niu, Wenyu Xing, Yunyan Yao, Ranran Cai, Jirong Sun, X. C. Xie, Xi Lin, and Wei Han. Superconductor-Metal Quantum Transition at the EuO/KTaO$_{3}$ Interface[J]. Chin. Phys. Lett., 2020, 37(11): 017402
[8] Shuai Zhang, Yiyan Wang, Chaoyang Ma, Wenliang Zhu, Zhian Ren, Lei Shan, and Genfu Chen. Superconductivity at the Normal Metal/Dirac Semimetal Cd$_3$As$_2$ Interface[J]. Chin. Phys. Lett., 2020, 37(7): 017402
[9] Xin Shang, Hai-Wen Liu, Ke Xia. Charge Transport Properties of the Majorana Zero Mode Induced Noncollinear Spin Selective Andreev Reflection[J]. Chin. Phys. Lett., 2019, 36(10): 017402
[10] Lingjie Yu, Heqing Wang, Hao Li, Zhen Wang, Yidong Huang, Lixing You, Wei Zhang. A Silicon Shallow-Ridge Waveguide Integrated Superconducting Nanowire Single Photon Detector Towards Quantum Photonic Circuits[J]. Chin. Phys. Lett., 2019, 36(8): 017402
[11] Hao Ru, Yi-Shi Lin, Yin-Cong Chen, Yang Feng, Yi-Hua Wang. Observation of Two-Level Critical State in the Superconducting FeTe Thin Films$^*$[J]. Chin. Phys. Lett., 2019, 36(7): 017402
[12] Jian Xing, Li-Tian Wang, Xiao-Xin Gao, Xue-Lian Liang, Kai-Yong He, Ting Xue, Sheng-Hui Zhao, Jin-Li Zhang, Ming He, Xin-Jie Zhao, Shao-Lin Yan, Pei Wang, Lu Ji. Growth of TlBa$_{2}$Ca$_{2}$Cu$_{3}$O$_{9}$ Epitaxial Thin Films by Two-Step Method in Argon[J]. Chin. Phys. Lett., 2019, 36(5): 017402
[13] Hui-Ying Liu, Jun-Ren Shi. Radiation-Induced Oscillating Gap States of Nonequilibrium Two-Dimensional Superconductors[J]. Chin. Phys. Lett., 2018, 35(6): 017402
[14] Yulong Huang, Zhongpei Feng, Shunli Ni, Jun Li, Wei Hu, Shaobo Liu, Yiyuan Mao, Huaxue Zhou, Fang Zhou, Kui Jin, Huabing Wang, Jie Yuan, Xiaoli Dong, Zhongxian Zhao. Superconducting (Li,Fe)OHFeSe Film of High Quality and High Critical Parameters[J]. Chin. Phys. Lett., 2017, 34(7): 017402
[15] Jie Liu, Li-Qun Zhang, Zhen-Nan Jiang, Kamal Ahmad, Jian-She Liu, Wei Chen. Superconducting Nanowire Single Photon Detector with Optical Cavity[J]. Chin. Phys. Lett., 2016, 33(08): 017402
Viewed
Full text


Abstract