CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Observation of Shubnikov-de Haas Oscillations in Large-Scale Weyl Semimetal WTe$_{2}$ Films |
Yequan Chen, Yongda Chen, Jiai Ning, Liming Chen, Wenzhuo Zhuang, Liang He, Rong Zhang, Yongbing Xu**, Xuefeng Wang** |
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093
|
|
Cite this article: |
Yequan Chen, Yongda Chen, Jiai Ning et al 2020 Chin. Phys. Lett. 37 017104 |
|
|
Abstract Topological Weyl semimetal WTe$_{2}$ with large-scale film form has a promising prospect for new-generation spintronic devices. However, it remains a hard task to suppress the defect states in large-scale WTe$_{2}$ films due to the chemical nature. Here we significantly improve the crystalline quality and remove the Te vacancies in WTe$_{2}$ films by post annealing. We observe the distinct Shubnikov-de Haas quantum oscillations in WTe$_{2}$ films. The nontrivial Berry phase can be revealed by Landau fan diagram analysis. The Hall mobility of WTe$_{2}$ films can reach 1245 cm$^{2}$V$^{-1}$s$^{-1}$ and 1423 cm$^{2}$V$^{-1}$s$^{-1}$ for holes and electrons with the carrier density of $5\times 10^{19}$ cm$^{-3}$ and $2\times 10^{19}$ cm$^{-3}$, respectively. Our work provides a feasible route to obtain high-quality Weyl semimetal films for the future topological quantum device applications.
|
|
Received: 20 December 2019
Published: 26 December 2019
|
|
PACS: |
71.18.+y
|
(Fermi surface: calculations and measurements; effective mass, g factor)
|
|
71.20.Be
|
(Transition metals and alloys)
|
|
73.50.Jt
|
(Galvanomagnetic and other magnetotransport effects)
|
|
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
|
Fund: Supported by the National Key R&D Program of China (Grant Nos. 2017YFA0206304 and 2016YFA0300803), the National Natural Science Foundation of China (Grant Nos 61822403, 11874203, 11774160, 61427812 and U1732159), the Fundamental Research Funds for the Central Universities (Grant Nos 021014380080 and 021014380113), the Natural Science Foundation of Jiangsu Province of China (Grant No BK20192006), and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics. |
|
|
[1] | Schubnikow L and Haas W J d 1930 Proc. Neth. R. Acad. Sci. 33 130 | [2] | Shoenberg D 2009 Magnetic Oscillations in Metals (Cambridge: Cambridge University Press) | [3] | Chakravarty S and Kee H Y 2008 Proc. Natl. Acad. Sci. USA 105 8835 | [4] | Tang F, Po H C, Vishwanath A et al 2019 Nature 566 486 | [5] | Zhang T, Jiang Y, Song Z et al 2019 Nature 566 475 | [6] | Vergniory M G, Elcoro L, Felser C et al 2019 Nature 566 480 | [7] | Shekhar C, Nayak A K, Sun Y et al 2015 Nat. Phys. 11 645 | [8] | Zhang H, Liu C X , Qi X L et al 2009 Nat. Phys. 5 438 | [9] | Petrushevsky M, Lahoud E, Ron A et al 2012 Phys. Rev. B 86 045131 | [10] | Xiang Z J, Zhao D, Jin Z et al 2015 Phys. Rev. Lett. 115 226401 | [11] | Ali M N, Xiong J, Flynn S et al 2014 Nature 514 205 | [12] | Wang C M, Lu H Z and Shen S Q 2016 Phys. Rev. Lett. 117 077201 | [13] | Wang C M, Sun H P, Lu H Z et al 2017 Phys. Rev. Lett. 119 136806 | [14] | Pletikosic I, Ali M N, Fedorov A V et al 2014 Phys. Rev. Lett. 113 216601 | [15] | Kang D, Zhou Y, Yi W et al 2015 Nat. Commun. 6 7804 | [16] | Pan X C, Chen X, Liu H et al 2015 Nat. Commun. 6 7805 | [17] | Wang Y, Liu E, Liu H et al 2016 Nat. Commun. 7 13142 | [18] | Fei Z Y, Palomaki T, Wu S F et al 2017 Nat. Phys. 13 677 | [19] | Tang S J, Zhang C F, Wong D et al 2017 Nat. Phys. 13 683 | [20] | Wu S F, Fatemi V, Gibson Q D et al 2018 Science 359 76 | [21] | Fatemi V, Wu S F, Cao Y et al 2018 Science 362 926 | [22] | Sajadi E, Palomaki T, Fei Z Y et al 2018 Science 362 922 | [23] | Zhang E, Chen R, Huang C et al 2017 Nano Lett. 17 878 | [24] | Zhou J, Lin J, Huang X et al 2018 Nature 556 355 | [25] | Li J, Cheng S, Liu Z et al 2018 J. Phys. Chem. C 122 7005 | [26] | Zhou J, Liu F, Lin J et al 2017 Adv. Mater. 29 1603471 | [27] | Asaba T, Wang Y, Li G et al 2018 Sci. Rep. 8 6520 | [28] | Jia Z Y , Song Y H , Li X B et al 2017 Phys. Rev. B 96 041108 | [29] | Yao J D, Zheng Z Q and Yang G W 2019 Prog. Mater. Sci. 106 100573 | [30] | Gao M, Zhang M H, Niu W et al 2017 Appl. Phys. Lett. 111 031906 | [31] | Vermeulen P A, Momand J and Kooi B J 2019 CrystEngComm 21 3409 | [32] | Kong W D, Wu S F , Richard P et al 2015 Appl. Phys. Lett. 106 081906 | [33] | Cai P L, Hu J, He L P et al 2015 Phys. Rev. Lett. 115 057202 | [34] | Lv Y Y, Zhang B B, Li X et al 2016 Sci. Rep. 6 26903 | [35] | Wang X, Du Y, Dou S et al 2012 Phys. Rev. Lett. 108 266806 | [36] | Zhang M H, Wang X F, Zhang S et al 2016 IEEE Electron Device Lett. 37 1231 | [37] | Yang Y K , Xiu F X , Wang F Q et al 2019 Chin. Phys. B 28 107502 | [38] | Pan H, Zhang K, Wei Z et al 2016 Appl. Phys. Lett. 108 183103 | [39] | Huang X W , Liu X X , Yu P et al 2019 Chin. Phys. Lett. 36 077101 | [40] | Fatemi V, Gibson Q D, Watanabe K et al 2017 Phys. Rev. B 95 041410 | [41] | Novak M, Sasaki S, Segawa K et al 2015 Phys. Rev. B 91 041203 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|