Chin. Phys. Lett.  2020, Vol. 37 Issue (1): 016102    DOI: 10.1088/0256-307X/37/1/016102
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
The Unexpected Stability of Hydrazine Molecules in Hydrous Environment under Pressure
Shu-Qing Jiang1, Xue Yang2, Xiao-Li Huang3, Yan-Ping Huang3, Xin Li1, Tian Cui1,3**
1Synergetic Extreme Condition User Facility, College of Physics, Jilin University, Changchun 130012
2School of Science, Changchun Institute of Technology, Changchun 130012
3State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012
Cite this article:   
Shu-Qing Jiang, Xue Yang, Xiao-Li Huang et al  2020 Chin. Phys. Lett. 37 016102
Download: PDF(746KB)   PDF(mobile)(739KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The incomplete decomposition product of metastable hydrazine (N$_{2}$H$_{4}$) instead of the energetically favorable ammonia (NH$_{3}$) upon decompression is one drawback in applications of energetic material oligomeric hydronitrogens. We explore the stability of hydrazine molecules in hydrazine hydrate (N$_{2}$H$_{4}$$\cdot$H$_{2}$O) under pressure in diamond anvil cells (DACs) combined with in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD) measurements. The results show that one NH$_{2}$ branch forms NH$_{3}$ group by hydrogen bonds between hydrazine and water molecules after the sample crystallizes at 3.2 GPa. The strengthening hydrogen bonds cause the torsion of hydrazine molecules and further dominate a phase transition at 7.2 GPa. Surprisingly, the NN single bonds are strengthened with increasing pressure, which keeps the hydrazine molecules stable up to the ultimate pressure of 36 GPa. Furthermore, the main diffraction patterns show continuous shift to higher degrees in the whole pressure range while some weak lines disappear above 8.2 GPa. The present peak-indexing results of the diffraction patterns with Materials Studio show that the phase transition occurs in the same monoclinic crystal system. Upon decompression, all of the hydrazine molecules extract from hydrazine hydrate crystal at 2.3 GPa, which may provide a new way to purify hydrazine from hydrate.
Received: 08 October 2019      Published: 23 December 2019
PACS:  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  62.50.-p (High-pressure effects in solids and liquids)  
  33.20.Fb (Raman and Rayleigh spectra (including optical scattering) ?)  
  61.05.cp (X-ray diffraction)  
Fund: Supported by the National Key R&D Program of China under Grant Nos. 2018YFA0305900 and 2016YFB0201204, the National Natural Science Foundation of China under Grant Nos. 11604342, 51572108, 51632002, 11504127, 11674122, 11574112, 11474127, and 11634004, the Program for Changjiang Scholars and Innovative Research Team in University under Grant No. IRT_15R23, and the National Fund for Fostering Talents of Basic Science under Grant No. J1103202.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/1/016102       OR      https://cpl.iphy.ac.cn/Y2020/V37/I1/016102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shu-Qing Jiang
Xue Yang
Xiao-Li Huang
Yan-Ping Huang
Xin Li
Tian Cui
[1]Goncharov A F, Gregoryanz E, Mao H K, Liu Z X, Hemley and R J 2000 Phys. Rev. Lett. 85 1262
[2]Simpson P D, Howie R T and Gregoryanz E 2016 Nature 529 63
[3]Eremets M I, Hemley R J, Mao H K and Gregoryanz E 2001 Nature 411 170
[4]Dias R P and Silvera I F 2017 Science 355 715
[5]Celliers P M, Millot M, Brygoo S, McWilliams R S, Fratanduono D E, Rygg J R, Goncharov A F, Loubeyre P, Eggert J H, Peterson J L, Meezan M B, Pape S L, Collins J W, Jeanloz R and Hemley R J 2018 Science 361 677
[6]Jiang S Q, Holtgrewe N, Lobanov S S, Su F H, Mahmood M F, McWilliams R S and Goncharov A F 2018 Nat. Commun. 9 2624
[7]Jiang S Q, Holtgrewe N, Geballe Z M, Lobanov S S, Mahmood M F, McWilliams R S and Goncharov A F 2018 arXiv:1810.01360
[8]McWilliams R S, Dalton D A, Mahmood M F and Goncharov A F 2016 Phys. Rev. Lett. 116 255501
[9]Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A and Boehler R 2004 Nat. Mater. 3 558
[10]Tomasino D, Kim M, Smith J and Yoo C H 2014 Phys. Rev. Lett. 113 205502
[11]Wigner E and Huntington H B 1935 J. Chem. Phys. 3 764
[12]Spaulding D K, Weck G, Loubeyre P, Datchi F, Dumas P and Hanfland M 2014 Nat. Commun. 5 5739
[13]Goncharov A F, Holtgrewe N, Qian G R, Hu C H, Oganov A R, Somayazulu M, Stavrou E, Pickard C J, Berlie A, Yen F, Mahmood M, Lobanov S S, Konôpková Z and Prakapenka V B 2015 J. Chem. Phys. 142 214308
[14]Wang H B, Eremets M I, Troyan I, Liu H Y, Ma Y M and Vereecken L 2015 Sci. Rep. 5 13239
[15]Ciezak J A, Jenkins T A and Hemley R J 2009 in AIP Conference Proceedings (New York: AIP) p 1291
[16]Kim M and Yoo C S 2011 J. Chem. Phys. 134 044519
[17]Laniel D, Svitlyk V, Weck G and Loubeyre P 2018 Phys. Chem. Chem. Phys. 20 4050
[18]Turnbull R, Donnelly M E, Wang M N, Peña-Alvarez M, Ji C, Simpson P D, Mao H K, Gregoryanz E and Howie R T 2018 Phys. Rev. Lett. 121 195702
[19]Jain S 1989 J. Indian Inst. Sci. 69 175
[20]Zheng M Y, Chen X W, Cheng R H, Li N, Sun J, Wang X D and Zhang T 2006 Catal. Commun. 7 187
[21]Santos J B O, Valença G P and Rodrigues J A J 2002 J. Catal. 210 1
[22]Jiang S Q, Huang X L, Duan D F, Zheng S K, Li F F, Yang X, Zhou Q, Liu B B and Cui T 2014 J. Phys. Chem. C 118 3236
[23]McMillan J A and Los S C 1965 J. Chem. Phys. 42 160
[24]Liminga R and Olovsson I 1964 Acta Crystallogr. 17 1523
[25]Zocchi M, Busing W R, Ellison R D and Levy H A 1962 Acta Crystallogr. 15 803
[26]Jiang S Q, Duan D F, Li F F, Huang X L, Yang X, Li W B, Huang Y P, Bao K, Zhou Q, Liu B B and Cui T 2015 J. Raman Spectrosc. 46 266
[27]Ninet S, Datchi F, Saitta A M, Lazzeri M and Canny B 2006 Phys. Rev. B 74 104101
[28]Johannsen P G 1998 J. Phys.: Condens. Matter 10 2241
[29]Gauthier M, Pruzan P, Chervin J C and Besson J M 1988 Phys. Rev. B 37 2102
[30]Goncharov A F, Struzhkin V V, Mao H K and Hemley R J 1999 Phys. Rev. Lett. 83 1998
[31]Goncharov A F, Struzhkin V V, Somayazulu M S, Hemley R J and Mao H K 1996 Science 273 218
[32]Machida S I, Hirai H, Kawamura T, Yamamoto Y and Yagi T 2010 J. Phys. Chem. Solids 71 1324
Related articles from Frontiers Journals
[1] Lulu Liu, Shoutao Zhang, and Haijun Zhang. Pressure-Driven Ne-Bearing Polynitrides with Ultrahigh Energy Density[J]. Chin. Phys. Lett., 2022, 39(5): 016102
[2] Yufeng Li, Shichuan Sun, Yu He, and Heping Li. First-Principles Calculations about Elastic and Li$^{+}$ Transport Properties of Lithium Superoxides under High Pressure and High Temperature[J]. Chin. Phys. Lett., 2022, 39(2): 016102
[3] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 016102
[4] Qunfei Zheng, Qiang Li, Saidong Xue, Yanhui Wu, Lijuan Wang, Qian Zhang, Xiaomei Qin, Xiangyong Zhao, Feifei Wang, and Wenge Yang. Pressure Driven Structural Evolutions of 0.935(Na$_{0.5}$Bi$_{0.5}$)TiO$_{3}$-0.065BaTiO$_{3}$ Lead-Free Ferroelectric Single Crystal through Raman Spectroscopy[J]. Chin. Phys. Lett., 2021, 38(2): 016102
[5] Qingqi Zeng, Jianlei Shen, Enke Liu, Xuekui Xi, Wenhong Wang, Guangheng Wu, and Xixiang Zhang. Large Barocaloric Effect with High Pressure-Driving Efficiency in a Hexagonal MnNi$_{0.77}$Fe$_{0.23}$Ge Alloy[J]. Chin. Phys. Lett., 2020, 37(7): 016102
[6] Jingyan Song, Shuai Duan, Xin Chen, Xiangjun Li , Bingchao Yang , and Xiaobing Liu. Synthesis of Highly Stable One-Dimensional Black Phosphorus/h-BN Heterostructures: A Novel Flexible Electronic Platform[J]. Chin. Phys. Lett., 2020, 37(7): 016102
[7] Li Lei, Qi-Qi Tang, Feng Zhang, Shan Liu, Bin-Bin Wu, Chun-Yin Zhou. Evidence for a New Extended Solid of Nitrogen *[J]. Chin. Phys. Lett., 0, (): 016102
[8] Li Lei, Qi-Qi Tang, Feng Zhang, Shan Liu, Bin-Bin Wu, Chun-Yin Zhou. Evidence for a New Extended Solid of Nitrogen[J]. Chin. Phys. Lett., 2020, 37(6): 016102
[9] Gang-Ling Hao, Yu-Chuan Li, Xing-Fu Wang, Wei-Guo Wang, Xin-Fu Wang, Dan Wang, Xian-Yu Li. Fe–Al Phase Formation Studied by Internal Friction during Heating Process[J]. Chin. Phys. Lett., 2020, 37(3): 016102
[10] Chao Wang, Yun-Xian Liu, Xin Chen, Pin Lv, Hai-Rui Sun, Xiao-Bing Liu. Stable Compositions, Structures and Electronic Properties in K–Ga Systems Under Pressure[J]. Chin. Phys. Lett., 2020, 37(2): 016102
[11] Can Tian, Xiao-li Huang, Yan-ping Huang, Xin Li, Di Zhou, Xin Wang, Tian Cui. High-Pressure Behavior of Nano-Pt in Hydrogen Environment[J]. Chin. Phys. Lett., 2019, 36(10): 016102
[12] Shu-Peng Lyu, Jia Wang, Guo-Zhao Zhang, Yu-Fei Wang, Min Wang, Cai-Long Liu, Chun-Xiao Gao, Yong-Hao Han. Pressure-Induced Ionic-Electronic Transition in BiVO$_{4}$[J]. Chin. Phys. Lett., 2019, 36(7): 016102
[13] Sheng Jiang, Jing Liu, Xiao-Dong Li, Yan-Chun Li, Shang-Ming He, Ji-Chao Zhang. High-Pressure Phase Transitions of Cubic Y$_{2}$O$_{3}$ under High Pressures by In-situ Synchrotron X-Ray Diffraction[J]. Chin. Phys. Lett., 2019, 36(4): 016102
[14] Yun-Peng Gao, Wan-Qing Dong, Gong Li, Ri-Ping Liu. Influence of Pressure on the Annealing Process of $\beta$-Ca$_{2}$SiO$_{4}$(C$_{2}$S) in Portland Cement[J]. Chin. Phys. Lett., 2018, 35(3): 016102
[15] Hu Cheng, Yan-Chun Li, Gong Li, Xiao-Dong Li. Structural Phase Transitions of ZnTe under High Pressure Using Experiments and Calculations[J]. Chin. Phys. Lett., 2016, 33(09): 016102
Viewed
Full text


Abstract