Chin. Phys. Lett.  2020, Vol. 37 Issue (1): 016101    DOI: 10.1088/0256-307X/37/1/016101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Supersonic Shock Wave with Landau Quantization in a Relativistic Degenerate Plasma
M. Kr. Deka1, A. N. Dev2**
1Department of Applied Sciences, Gauhati University, Guwahati-781014, Assam, India
2Center for Applied Mathematics and Computing, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751030, Odisha, India
Cite this article:   
M. Kr. Deka, A. N. Dev 2020 Chin. Phys. Lett. 37 016101
Download: PDF(562KB)   PDF(mobile)(552KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A three-dimensional (3D) Burgers' equation adopting perturbative methodology is derived to study the evolution of a shock wave with Landau quantized magnetic field in relativistic quantum plasma. The characteristics of a shock wave in such a plasma under the influence of magnetic quantization, relativistic parameter and degenerate electron density are studied with assistance of steady state solution. The magnetic field has a noteworthy control, especially on the shock wave's amplitude in the lower range of the electron density, whereas the amplitude in the higher range of the electron density reduces remarkably. The rate of increase of shock wave potential is much higher (lower) with a magnetic field in the lower (higher) range of electron density. With the relativistic factor, the shock wave's amplitude increases significantly and the rate of increase is higher (lower) for lower (higher) electron density. The combined effect of the increase of relativistic factor and the magnetic field on the strength of the shock wave, results in the highest value of the wave potential in the lower range of the degenerate electron density.
Received: 01 August 2019      Published: 23 December 2019
PACS:  61.72.J- (Point defects and defect clusters)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  71.20.Nr (Semiconductor compounds)  
  71.55.Gs (II-VI semiconductors)  
Fund: Supported by Manoj Kumar Deka from DST-SERB of India under Grant No YSS/2015/001896.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/1/016101       OR      https://cpl.iphy.ac.cn/Y2020/V37/I1/016101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. Kr. Deka
A. N. Dev
[1]Roy K, Misra A P and Chatterjee P 2008 Phys. Plasmas 15 032310
[2]Sahu B and Roychoudhury R 2007 Phys. Plasmas 14 072310
[3]Marklund M et al 2005 Europhys. Lett. 72 950
[4]Bychkov V et al 2008 arXiv:0801.1295
[5]Dev A N and Deka M K 2017 Braz. J. Phys. 47 532
[6]Dev A N and Deka M K 2018 Phys. Plasmas 25 072117
[7]Dev A N and Sarma J et al 2015 Plasma Sci. Technol. 17 268
[8]Dev A N et al 2015 J. Korean Phys. Soc. 67 339
[9]Dev A N et al 2014 Commun. Theor. Phys. 62 875
[10]Dev A N et al 2015 Can. J. Phys. 93 1030
[11]Deka M K and Dev A N 2018 Plasma Phys. Rep. 441
[12]Shukla P K and Eliasson B 2006 Phys. Rev. Lett. 96 245001
[13]Brodin G and Marklund M 2007 Phys. Rev. E 76 055403
[14]Brodin G et al 2008 Phys. Rev. Lett. 100 175001
[15]Shukla P K and Eliasson B 2010 Phys. Usp. 53 51
[16]Haas F 2011 Quantum Plasmas: An Hydrodyanmic Approach (New York: Springer)
[17]Chandrasekhar S 1931 Philos. Mag. 11 592
[18]Chaichian M et al 2000 Phys. Rev. Lett. 84 5261
[19]Fortov V F 2009 Phys. Usp. 52 615
[20]Glenzer S H et al 2007 Phys. Rev. Lett. 98 065002
[21]Dariescu C and Dariescu M A 2010 Chin. Phys. Lett. 27 011101
[22]Sakalli I and Halilsoy M 2011 Chin. Phys. Lett. 28 070402
[23]Sun X D et al 2014 Chin. Phys. B 23 060401
[24]Goyal N and Gupta R K 2012 Chin. Phys. B 21 090401
[25]Gao Y J 2004 Chin. Phys. B 13 602
[26]Nashed Gamal G L 2011 Chin. Phys. B 20 020402
[27]Sharif M and Yousaf Z 2012 Chin. Phys. Lett. 29 050403
[28]Zhou K et al 2012 Chin. Phys. B 21 020401
[29]Sharif Mamd Azam M 2013 Chin. Phys. B 22 050401
[30]Azam M et al 2016 Chin. Phys. Lett. 33 070401
[31]Misra A P and Ghosh N K 2008 Phys. Lett. A 372 6412
[31]Dev A N 2017 Chin. Phys. B 26 025203
[33]Dev A N et al 2016 Chin. Phys. B 25 105202
[34]Atteya A et al 2017 Eur. Phys. J. Plus 132 109
[35]Eliasson Band Shukla P K 2012 Europhys. Lett. 97 15001
[36]Sahu B and Misra A P 2017 Eur. Phys. J. Plus 132 316
[37]Hossen M A and Mamun A A 2015 Phys. Plasmas 22 073505
[38]Zobaer M S et al 2013 J. Plasma Phys. 79 65
[39]Moghanjoughi M A 2012 Open J. Acoust. 2 72
[40]Dip R D et al 2017 J. Korean Phys. Soc. 70 777
[41]Irfan M et al 2017 Phys. Plasmas 24 052108
[42]Iqbal M J et al 2017 Phys. Plasmas 24 014503
[43]Shah H A et al 2011 Phys. Plasmas 18 102306
[44]Deka M K and Dev A N 2018 Ann. Phys. 395 45
[45]Tsintsadze N L and Tsintsadze L N 2014 Eur. Phys. J. D 68 117
[46]Koester D and Chanmugam G 1990 Rep. Prog. Phys. 53 837
[47]Landstreet J 1967 Phys. Rev. 153 1372
[48]Lipunov V M 1992 Astrophysics of Neutron Stars (Berlin: Springer-Verlag Press)
[49]Ghosh S S and Lakhina G S 2004 Nonlinear ProcessesGeophys. 11 219
Related articles from Frontiers Journals
[1] Yue-Yu Zhang, Shiyou Chen, Peng Xu, Hongjun Xiang, Xin-Gao Gong, Aron Walsh, Su-Huai Wei. Intrinsic Instability of the Hybrid Halide Perovskite Semiconductor CH$_{3}$NH$_{3}$PbI$_{3}$$^*$[J]. Chin. Phys. Lett., 2018, 35(3): 016101
[2] Li-Long Pang, Bing-Sheng Li, Tie-Long Shen, Xing Gao, Xue-Song Fang, Ning Gao, Cun-Feng Yao, Kong-Fang Wei, Ming-Huan Cui, Jian-Rong Sun, Hai-Long Chang, Wen-Hao He, Qing Huang, Zhi-Guang Wang. Structural Distortion and Defects in Ti$_{3}$AlC$_{2}$ irradiated by Fe and He Ions[J]. Chin. Phys. Lett., 2018, 35(2): 016101
[3] Li Zheng, Guang-Fu Wang, Meng-Lin Qiu, Ying-Jie Chu, Mi Xu, Peng Yin. Ionoluminescence Spectra of a ZnO Single Crystal Irradiated with 2.5MeV H$^{+}$ Ions[J]. Chin. Phys. Lett., 2017, 34(8): 016101
[4] Ning Gao, Fei Gao, Zhi-Guang Wang. Anisotropic Migration of Defects under Strain Effect in BCC Iron[J]. Chin. Phys. Lett., 2017, 34(7): 016101
[5] Meng-Lin Qiu, Ying-Jie Chu, Guang-Fu Wang, Mi Xu, Li Zheng. Ion-Beam-Induced Luminescence of LiF Using Negative Ions[J]. Chin. Phys. Lett., 2017, 34(1): 016101
[6] WANG Ji, GAO Xing, WANG Zhi-Guang, WEI Kong-Fang, YAO Cun-Feng, CUI Ming-Huan, SUN Jian-Rong, LI Bing-Sheng, PANG Li-Long, ZHU Ya-Bin, LUO Peng, CHANG Hai-Long, ZHANG Hong-Peng, ZHU Hui-Ping, WANG Dong, DU Yang-Yang, XIE Er-Qing. TEM Characterization of Helium Bubbles in T91 and MNHS Steels Implanted with 200 keV He Ions at Different Temperatures[J]. Chin. Phys. Lett., 2015, 32(07): 016101
[7] LI Yuan-Fei, SHEN Tie-Long, GAO Xing, GAO Ning, YAO Cun-Feng, SUN Jian-Rong, WEI Kong-Fang, LI Bing-Sheng, ZHANG Peng, CAO Xing-Zhong, ZHU Ya-Bin, PANG Li-Long, CUI Ming-Huan, CHANG Hai-Long, WANG Ji, ZHU Hui-Ping, WANG Dong, SONG Peng, SHENG Yan-Bin, ZHANG Hong-Peng, HU Bi-Tao, WANG Zhi-Guang. Helium-Implantation-Induced Damage in NHS Steel Investigated by Slow-Positron Annihilation Spectroscopy[J]. Chin. Phys. Lett., 2014, 31(03): 016101
[8] QI Ning, JIA Yan-Lin, LIU Hui-Qun, YI Dan-Qing, CHEN Zhi-Quan. The Evolution of Defects in Deformed Cu-Ni-Si Alloys during Isochronal Annealing Studied by Positron Annihilation[J]. Chin. Phys. Lett., 2012, 29(12): 016101
[9] MAO Fei, ZHANG Chao, ZHANG Yan-Wen, ZHANG Feng-Shou. Collision Energy Dependence of Defect Formation in Graphene[J]. Chin. Phys. Lett., 2012, 29(7): 016101
[10] ZHANG Jing, CHEN Zheng, ZHUANG Hou-Chuan, LU Yan-Li. Microscopic Phase-Field Study of the Occupancy Probability of α Sublattices Involving Coordination Environmental Difference for D022−Ni3V[J]. Chin. Phys. Lett., 2012, 29(2): 016101
[11] RAO Jian-Ping, OUYANG Chu-Ying**, LEI Min-Sheng, JIANG Feng-Yi . Vacancy and H Interactions in Nb[J]. Chin. Phys. Lett., 2011, 28(12): 016101
[12] XU Jian-Ping, LI Lan, LV Li-Ya, ZHANG Xiao-Song, CHEN Xi-Ming, WANG Jian-Feng, ZHANG Feng-Ming, ZHONG Wei, DU You-Wei. Structural and Magnetic Properties of Fe-Doped Anatase TiO2 Films Annealed in Vacuum[J]. Chin. Phys. Lett., 2009, 26(9): 016101
[13] ZHANG Jing, CHEN Zheng, LU Yan-Li, WANG Yong-Xin, ZHAO Yan. Antisite Defects of the L12 Structure Determined by the Phase Field Microelasticity Model[J]. Chin. Phys. Lett., 2009, 26(6): 016101
[14] HUANG Wan-Qing, HAN Wei, WANG Fang, XIANG Yong, LI Fu-Quan, FENG Bin, JING Feng, WEI Xiao-Feng, ZHENG Wan-Guo, ZHANG Xiao-Min. Laser-Induced Damage Growth on Larger-Aperture Fused Silica Optical Components at 351nm[J]. Chin. Phys. Lett., 2009, 26(1): 016101
[15] Xue-Song Fang, Tie-Long Shen, Ming-Huan Cui, Peng Jin, Bing-Sheng Li, Ya-Bin Zhu, Zhi-Guang Wang. Characterization of Microstructure and Stability of Precipitation in SIMP Steel Irradiated with Energetic Fe Ions[J]. Chin. Phys. Lett., 2017, 34(11): 016101
Viewed
Full text


Abstract