Chin. Phys. Lett.  2019, Vol. 36 Issue (9): 094301    DOI: 10.1088/0256-307X/36/9/094301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Design of an Acoustic Levitator for Three-Dimensional Manipulation of Numerous Particles
Di Wu, De-Yao Yin, Zhi-Yuan Xiao, Qing-Fan Shi**
Experimental Center of Physics, Beijing Institute of Technology, Beijing 100081
Cite this article:   
Di Wu, De-Yao Yin, Zhi-Yuan Xiao et al  2019 Chin. Phys. Lett. 36 094301
Download: PDF(4169KB)   PDF(mobile)(4161KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a design of an acoustic levitator consisting of three pairs of opposite transducer arrays. Three orthogonal standing waves create a large number of acoustic traps at which the particles are levitated in mid-air. By changing the phase difference of transducer arrays, three-dimensional manipulation of particles is successfully realized. Moreover, the relationship between the translation of particles and the phase difference is experimentally investigated, and the result is in agreement with the theoretical calculation. This design can expand the application of acoustic levitation in many fields, such as biomedicine, ultrasonic motor and new materials processing.
Received: 12 June 2019      Published: 23 August 2019
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.28.+h (Aeroacoustics and atmospheric sound)  
  43.38.+n (Transduction; acoustical devices for the generation and reproduction of sound)  
Fund: Supported by the Beijing College Students' Innovation and Entrepreneurship Training Program under Grant No BJ17040.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/9/094301       OR      https://cpl.iphy.ac.cn/Y2019/V36/I9/094301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Di Wu
De-Yao Yin
Zhi-Yuan Xiao
Qing-Fan Shi
[1]Laurell T, Petersson F and Nilsson A 2007 Chem. Soc. Rev. 36 492
[2]Weber R J K, Benmore C J, Tumber S K, Tailor A N, Rey C A, Taylor L S and Byrn S R 2012 Eur. Biophys. J. 41 397
[3]Xie W J, Cao C D, Lü Y J, Hong Z Y and Wei B 2006 Appl. Phys. Lett. 89 214102
[4]Yarin A L, Brenn G and Rensink D 2002 Int. J. Heat Fluid Flow 23 471
[5]Welter E and Neidhart B 1997 Fresenius' J. Anal. Chem. 357 345
[6]Gao J R, Cao C D and Wei B 1999 Adv. Space Res. 24 1293
[7]Weber J K R, Hampton D S, Merkley D R, Rey C A, Zatarski M M and Nordine P C 1994 Rev. Sci. Instrum. 65 456
[8]Hong Z Y, Xie W J and Wei B 2011 Rev. Sci. Instrum. 82 074904
[9]Lierke E G, Grossbach R, Flogel K and Clancy P 1983 Ultrasonics Symposium (Atlanta, USA 31 October–2 November 1983) p 1129
[10]Field C R and Scheeline A 2007 Rev. Sci. Instrum. 78 125102
[11]Kozuka T, Yasui K, Tuziuti T, Towata A and Iida Y 2008 Jpn. J. Appl. Phys. 47 4336
[12]Xie W J and Wei B B 2001 Chin. Phys. Lett. 18 68
[13]Xie W J, Cao C D, Lü Y J and Wei B 2002 Phys. Rev. Lett. 89 104304
[14]Whymark R R 1975 Ultrasonics 13 251
[15]Rey C A 1981 U. S. Patent No. 4284403 (Washington, DC: U.S. Patent and Trademark Office)
[16]Trinh E, Robey J, Jacobi N and Wang T 1986 J. Acoust. Soc. Am. 79 604
[17]Matsui T, Ohdaira E, Masuzawa N and Ide M 1995 Jpn. J. Appl. Phys. 34 2771
[18]Kashima R, Koyama D and Matsukawa M 2015 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62 2161
[19]Courtney C R, Demore C E, Wu H, Grinenko A, Wilcox P D, Cochran S and Drinkwater B W 2014 Appl. Phys. Lett. 104 154103
[20]Seah S A, Drinkwater B W, Carter T, Malkin R and Subramanian S 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 1233
[21]Zhai W, Liu H M, Hong Z Y, Xie W J and Wei B 2017 Ultrason. Sonochem. 34 130
[22]Guo F, Mao Z, Chen Y, Xie Z, Lata J P, Li P et al 2016 Proc. Natl. Acad. Sci. USA 113 1522
[23]Hoshi T, Ochiai Y and Rekimoto J 2014 Jpn. J. Appl. Phys. 53 07KE07
[24]Ochiai Y, Hoshi T and Rekimoto J 2014 PLOS ONE 9 e97590
[25]Ochiai Y, Hoshi T and Rekimoto J 2014 ACM Trans. Graph. 33 85
[26]Omirou T, Marzo A, Seah S A and Subramanian S 2015 Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems p 309
[27]Marzo A, Seah S A, Drinkwater B W, Sahoo D R, Long B and Subramanian S 2015 Nat. Commun. 6 8661
[28]Gor'kov L P 1961 Dokl. Akad. Nauk. 140 88
[29]Nakamura K, Asai A, Sasaki H, Yoshizawa S and Umemura S I 2013 Jpn. J. Appl. Phys. 52 07HF10
[30]Hosaka N, Koda R, Onogi S, Mochizuki T and Masuda K 2013 Jpn. J. Appl. Phys. 52 07HF14
[31]Narumi R, Matsuki K, Mitarai S, Azuma T, Okita K, Sasaki A et al 2013 Jpn. J. Appl. Phys. 52 07HF01
[32]Umemura S I, Yoshizawa S, Takagi R, Inaba Y and Yasuda J 2013 Jpn. J. Appl. Phys. 52 07HA02
[33]Grinenko A, Ong C K, Courtney C R P, Wilcox P D and Drinkwater B W 2012 Appl. Phys. Lett. 101 233501
[34]Sid-Ahmed M A and Boraie M T 1990 IEEE Trans. Instrum. Meas. 39 512
Related articles from Frontiers Journals
[1] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters[J]. Chin. Phys. Lett., 2020, 37(6): 094301
[2] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters *[J]. Chin. Phys. Lett., 0, (): 094301
[3] Shu-Huan Xie, Xinsheng Fang, Peng-Qi Li, Sibo Huang, Yu-Gui Peng, Ya-Xi Shen, Yong Li, Xue-Feng Zhu. Tunable Double-Band Perfect Absorbers via Acoustic Metasurfaces with Nesting Helical Tracks[J]. Chin. Phys. Lett., 2020, 37(5): 094301
[4] Hong-Juan Yang, Jian Li, Xiang Gao, Jun Ma, Jun-Hong Li, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media by Snapshot Time Reversal and Reverse Time Migration Mixed Method[J]. Chin. Phys. Lett., 2019, 36(11): 094301
[5] Jin-Fu Liang, Yu An, Wei-Zhong Chen. Computational Simulation of Sodium Doublet Line Intensities in Multibubble Sonoluminescence[J]. Chin. Phys. Lett., 2019, 36(10): 094301
[6] Hang Yang, Xin Zhang, Jian-hua Guo, Fu-gen Wu, Yuan-wei Yao. Influence of Coating Layer on Acoustic Wave Propagation in a Random Complex Medium with Resonant Scatterers[J]. Chin. Phys. Lett., 2019, 36(8): 094301
[7] Yuan-Yuan Zhang, Wei-Zhong Chen, Ling-Ling Zhang, Xun Wang, Zhan Chen. Uniform Acoustic Cavitation of Liquid in a Disk[J]. Chin. Phys. Lett., 2019, 36(3): 094301
[8] Zhi-Miao Lu, Li Cai, Ji-Hong Wen, Xing Chen. Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density[J]. Chin. Phys. Lett., 2019, 36(2): 094301
[9] Ke-xue Sun, Shu-yi Zhang, Kiyotaka Wasa. High Ferroelectricities and High Curie Temperature of BiInO$_{3}$PbTiO$_{3}$ Thin Films Deposited by RF Magnetron Sputtering Method[J]. Chin. Phys. Lett., 2018, 35(12): 094301
[10] Han Chen, Ming-Xi Deng, Ning Hu, Ming-Liang Li, Guang-Jian Gao, Yan-Xun Xiang. Analysis of Second-Harmonic Generation of Low-Frequency Dilatational Lamb Waves in a Two-Layered Composite Plate[J]. Chin. Phys. Lett., 2018, 35(11): 094301
[11] H. Barati, Z. Basiri, A. Abdolali. Acoustic Multi Emission Lens via Transformation Acoustics[J]. Chin. Phys. Lett., 2018, 35(10): 094301
[12] Qi Wang, Wei-Zhong Chen, Xun Wang, Tai-Yang Zhao. Effects of Sodium Dodecyl Sulfate on a Single Cavitation Bubble[J]. Chin. Phys. Lett., 2018, 35(8): 094301
[13] Xun Wang, Wei-Zhong Chen, Qi Wang, Jin-Fu Liang. A Theoretical Model for the Asymmetric Transmission of Powerful Acoustic Wave in Double-Layer Liquids[J]. Chin. Phys. Lett., 2017, 34(8): 094301
[14] Tai-Yang Zhao, Wei-Zhong Chen, Sheng-De Liang, Xun Wang, Qi Wang. Temperature and Pressure inside Sonoluminescencing Bubbles Based on Asymmetric Overlapping Sodium Doublet[J]. Chin. Phys. Lett., 2017, 34(6): 094301
[15] Ming-Liang Li, Ming-Xi Deng, Guang-Jian Gao, Han Chen, Yan-Xun Xiang. Influence of Change in Inner Layer Thickness of Composite Circular Tube on Second-Harmonic Generation by Primary Circumferential Ultrasonic Guided Wave Propagation[J]. Chin. Phys. Lett., 2017, 34(6): 094301
Viewed
Full text


Abstract