CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Superconductivity in Topological Semimetal $\theta$-TaN at High Pressure |
Ya-Ting Jia1,2, Jian-Fa Zhao1,2, Si-Jia Zhang1, Shuang Yu1,2, Guang-Yang Dai1,2, Wen-Min Li1, Lei Duan1, Guo-Qiang Zhao1,2, Xian-Cheng Wang1, Xu Zheng1, Qing-Qing Liu1, You-Wen Long1,2,3, Zhi Li4, Xiao-Dong Li5, Hong-Ming Weng1, Run-Ze Yu1, Ri-Cheng Yu1, Chang-Qing Jin1,2,3** |
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2School of Physics, University of Chinese Academy of Sciences, Beijing 100190 3Songshan Lake Materials Laboratory, Guangdong 523808 4School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 5Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Ya-Ting Jia, Jian-Fa Zhao, Si-Jia Zhang et al 2019 Chin. Phys. Lett. 36 087401 |
|
|
Abstract Recently, $\theta$-TaN was proposed to be a topological semimetal with a new type of triply degenerate nodal points. Here, we report studies of pressure dependence of transport, Raman spectroscopy and synchrotron x-ray diffraction on $\theta$-TaN up to 61 GPa. We find that $\theta$-TaN becomes superconductive above 24.6 GPa with $T_{\rm c}$ at 3.1 K. The $\theta$-TaN is of n-type carrier nature with carrier density about $1.1\times 10^{20}$/cm$^{3}$ at 1.2 GPa and 20 K, while the carrier density increases with the pressure and saturates at about 40 GPa in the measured range. However, there is no crystal structure transition with pressure up to 39 GPa, suggesting the topological nature of the pressure induced superconductivity.
|
|
Received: 17 May 2019
Published: 22 July 2019
|
|
PACS: |
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
74.25.Dw
|
(Superconductivity phase diagrams)
|
|
74.62.Fj
|
(Effects of pressure)
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant No 2018YFA0305701. |
|
|
[1] | Weng H, Fang C, Fang Z and Dai X 2016 Phys. Rev. B 93 241202 | [2] | Chiu C K, Teo J C, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005 | [3] | Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004 | [4] | Young S M, Zaheer S, Teo J, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405 | [5] | Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai Xi and Fang Z 2012 Phys. Rev. B 85 195320 | [6] | Wang Z, Weng H, Wu Q, Dai X and Fang Z 2013 Phys. Rev. B 88 125427 | [7] | Hor Y S, Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P and Cava R J 2010 Phys. Rev. Lett. 104 057001 | [8] | Zhang J L, Zhang S J, Weng H M, Zhang W, Yang L X, Liu Q Q, Feng S M, Wang X C, Yu R C, Cao L Z, Wang L, Yang W G, Liu H Z, Zhao W Y, Zhang S C, Dai X, Fang Z and Jin C Q 2011 Proc. Natl. Acad. Sci. USA 108 24 | [9] | Sasaki S, Kriener M, Segawa K, Yada K, Tanaka Y, Sato M and Ando Y 2011 Phys. Rev. Lett. 107 217001 | [10] | Sato T, Tanaka Y, Nakayama K, Souma S, Takahashi T, Sasaki S, Ren Z, Taskin A, Segawa K and Ando Y 2013 Phys. Rev. Lett. 110 206804 | [11] | Kirshenbaum K, Syers P S, Hope A P, Butch N P, Jeffries J R, Weir S T, Hamlin J J, Maple M B, Vohra Y K and Paglione J 2013 Phys. Rev. Lett. 111 087001 | [12] | Zhu J, Zhang J L, Kong P P, Zhang S J, Yu X H, Zhu J L, Liu Q Q, Li X, Yu R C, Ahuja R, Yang W G, Shen G Y, Mao H K, Weng H M, Dai X, Fang Z, Zhao Y S and Jin C Q 2013 Sci. Rep. 3 2016 | [13] | Kong P P, Sun F, Xing L Y, Zhu J, Zhang S J, Li W M, Liu Q Q, Wang X C, Feng S M, Yu X H, Zhu J L, Yu R C, Yang W G, Shen G Y, Zhao Y S, Ahuja R, Mao H K and Jin C Q 2014 Sci. Rep. 4 6679 | [14] | Zhang J L, Zhang S J, Kong P P, Zhu J, Li X D, Liu J, Cao L Z and Jin C Q 2013 Physica C 493 75 | [15] | He L P, Jia Y T, Zhang S J, Hong X C, Jin C Q and Li S Y 2016 npj Quantum Mater. 1 16014 | [16] | Jin M L, Sun F, Xing L Y, Zhang S J, Feng S M, Kong P P, Li W M, Wang X C, Zhu J L, Long Y W, Bai H Y, Gu C Z, Yu R C, Yang W G, Shen G Y, Zhao Y S, Mao H K and Jin C Q 6 2017 Sci. Rep. 7 39699 | [17] | Liu Y, Long Y J, Zhao L X, Nie S M, Zhang S J, Weng Y X, Jin M L, Li W M, Liu Q Q, Long Y W, Yu R C, Gu C Z, Sun F, Yang W G, Mao H K, Feng X L, Li Q, Zheng W T, Weng H M, Dai X, Fang Z, Chen G F and Jin C Q 2017 Sci. Rep. 7 44367 | [18] | Zhang S J, Zhang J L, Yu X H, Zhu J, Kong P P, Feng S M, Liu Q Q, Yang L X, Wang X C, Cao L Z, Yang W G, Wang L, Mao H G, Zhao Y S, Liu H Z, Dai X, Fang Z, Zhang S C and Jin C Q 2012 J. Appl. Phys. 111 112630 | [19] | Mao H, Xu J A and Bell P 1986 J. Geophys. Res.: Solid Earth 91 4673 | [20] | Hammersley A, Svensson S, Hanfl M, Fitch A and Hausermann D 1996 High Press. Res. 14 235 | [21] | Gonze X, Amadon B, Anglade P M, Beuken J M, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Côté M, Deutsch T, Genovese L, Ghosez Ph, Giantomassi M, Goedecker S, Hamann D R, Hermet P K, Jollet F and Zwanziger J W 2009 Comput. Phys. Commun. 180 2582 | [22] | Christensen A N and Lebech B 1978 Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 34 261 | [23] | Gatterer J, Dufek G, Ettmayer P and Kieffer R 1975 Monatsh. Chem. - Chem. Mon. 106 1137 | [24] | Boiko L G and Popova S V 1970 JETP Lett. 12 101 | [25] | Gillan E G and Kaner R B 1994 Inorg. Chem. 33 5693 | [26] | Ensinger W, Kiuchi M and Satou M 1995 J. Appl. Phys. 77 6630 | [27] | Brauer G, Mohr E, Neuhaus A and Skokan A 1972 Monatsh. Chem. - Chem. Mon. 103 794 | [28] | Bay T V, Naka T, Huang Y K, Luigjes H, Golden M S and de Visser A 2012 Phys. Rev. Lett. 108 057001 | [29] | Xing Y, Wang H, Li C K, Zhang X, Liu J, Zhang Y W, Luo J W, Wang Z Q, Wang Y, Ling L S, Tian M L, Jia S, Feng J, Liu X J, Wei J and Wang J 2016 npj Quantum Mater. 1 16005 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|