Chin. Phys. Lett.  2019, Vol. 36 Issue (7): 074204    DOI: 10.1088/0256-307X/36/7/074204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
High Power Pulse Laser Reflection Sequence Combination with a Fast Steering Mirror
Ke-Ling Gong1,3, Jian Xu1,3**, Lin Zhang1,3, Ya-Ding Guo1,3, Bao-Shan Wang1, Yang Li1, Shuai Li1,3, Zhong-Zheng Chen1,2, Lei Yuan1,2, Yang Kou1,2, Yi-Ting Xu1,2, Qin-Jun Peng1,3**, Zu-Yan Xu1,2
1Key Lab of Solid State Laser, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
2Key Lab of Function Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
3University of Chinese Academy of Sciences, Beijing 100190
Cite this article:   
Ke-Ling Gong, Jian Xu, Lin Zhang et al  2019 Chin. Phys. Lett. 36 074204
Download: PDF(723KB)   PDF(mobile)(719KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose and demonstrate a new approach for a high power pulse laser reflection sequence combination with a fast steering mirror (FSM). This approach possesses significant advantages for lasers combining with a variety of output power, wavelength, pulse duration, repetition rates and polarization. The maximum number of laser routes participating in combination principally depends on the FSM's adjustment time of the step response, lasers' repetition rates and pulse duration. A proof-of-principle experiment is performed with two 2-kW level pulsed beams. The results indicate that the combined beam has an excellent pointing stability with rms pointing jitter $\sim $8.5 $\mu$rad. Meanwhile, a high combining efficiency of 98.6% is achieved with maintaining good beam quality.
Received: 19 April 2019      Published: 20 June 2019
PACS:  42.60.By (Design of specific laser systems)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
  42.15.Eq (Optical system design)  
Fund: Supported by the Knowledge Innovation Program of Chinese Academy of Sciences under Gant No GJJSTD20180004.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/7/074204       OR      https://cpl.iphy.ac.cn/Y2019/V36/I7/074204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ke-Ling Gong
Jian Xu
Lin Zhang
Ya-Ding Guo
Bao-Shan Wang
Yang Li
Shuai Li
Zhong-Zheng Chen
Lei Yuan
Yang Kou
Yi-Ting Xu
Qin-Jun Peng
Zu-Yan Xu
[1]Karlsen S R, Price K, Reynolds M et al 2009 Proc. SPIE 7198 71980T-1
[2]Richardson D J, Nilsson J and Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63
[3]Dawson J W, Messerly M J, Beach R J et al 2008 Opt. Express 16 13240
[4]Li Y Z, Qian L J, Lu D Q et al 2007 Opt. Laser Technol. 39 957
[5]Wang X L, Zhou P, Leng J Y et al 2011 IEEE Photon. Technol. Lett. 23 980
[6]Liu Z J, Ma P F, Su R T et al 2017 J. Opt. Soc. Am. B 34 A7
[7]Qi Y F, Liu C, Zhou J et al 2009 Appl. Opt. 48 5514
[8]Dahl K, Raaba M and Tholla H D 2014 Proc. SPIE 9251 925109
[9]Tian Z S, Miao J G, Xu Z J et al 2015 Chin. Phys. Lett. 32 124202
[10]Jin Y Y, Zou Y G, Ma X H et al 2012 International Conference on Optoelectronics and Microelectronics (Changchun, China 23–25 August 2012) p 87
[11]Van Zandt N R, Cusumano S J, Bartell R J et al 2012 Opt. Eng. 51 104301
[12]Bammer F, Holzinger B and Schumi T 2006 Opt. Express 14 3324
[13]Sevian A, Andrusyak O, Ciapurin I et al 2008 Opt. Lett. 33 384
[14]Xia L, Han X D and Shao J F 2014 Chin. Opt. Lett. 7 801
[15]Liang X B, Chen L M, Li C et al 2015 High Power Laser Part. Beams 27 071012
[16]Jian X, Gao H W, Xu Y T et al 2013 Appl. Opt. 52 208
[17]Wang Z X, Zhang B, Li X T et al 2018 Optik 172 995
[18]Ding L, Li S, Lu Z W et al 2016 Optik 127 6056
Related articles from Frontiers Journals
[1] Sen-Sen Liu, Xu-Dong Chen, Ji-Xiong Pu, Zhi-Li Lin, Zi-Yang Chen. A V-Folded Digital Laser for On-Demand Vortex Beams by Astigmatic Transformation of Hermite–Gaussian Modes[J]. Chin. Phys. Lett., 2019, 36(12): 074204
[2] Yan-Ping Li, Li-Jun Yuan, Li Tao, Wei-Xi Chen, Bao-Jun Wang, Jiao-Qing Pan. III–V/Si Hybrid Laser Array with DBR on Si Waveguide[J]. Chin. Phys. Lett., 2019, 36(10): 074204
[3] Teng Sun, Jian-Guo Xin, Yu-Chen Song. Laser-Diode Pumped Passive Q-Switched Laser with Quick Tunable Pulse-Width Capability[J]. Chin. Phys. Lett., 2019, 36(3): 074204
[4] Gen Yue, Yu Lei, Jun-Hui Die, Hai-Qiang Jia, Hong Chen. Fabrication of 4-Inch Nano Patterned Wafer with High Uniformity by Laser Interference Lithography[J]. Chin. Phys. Lett., 2018, 35(5): 074204
[5] Yue-e Chen, Yun-kai Zhou, De-wang Yang, Wei Yan, Yong Wang. A Temperature-Insensitive Amplified Spontaneous Emission Broadband Source Based on Er-Doped Fiber[J]. Chin. Phys. Lett., 2018, 35(4): 074204
[6] Xiao Chen, Xiao-Lei Zhu, Shi-Guang Li, Xiu-Hua Ma, Wei Xie, Ji-Qiao Liu, Wei-Biao Chen, Ren Zhu. Frequency Stabilization of Pulsed Injection-Seeded OPO Based on Optical Heterodyne Technique[J]. Chin. Phys. Lett., 2018, 35(2): 074204
[7] Zhao-Yang Tai, Lu-Lu Yan, Yan-Yan Zhang, Xiao-Fei Zhang, Wen-Ge Guo, Shou-Gang Zhang, Hai-Feng Jiang. Transportable 1555-nm Ultra-Stable Laser with Sub-0.185-Hz Linewidth[J]. Chin. Phys. Lett., 2017, 34(9): 074204
[8] Si-Hang Wei, Xiang-Jun Shang, Ben Ma, Ze-Sheng Chen, Yong-Ping Liao, Hai-Qiao Ni, Zhi-Chuan Niu. Intracavity Spontaneous Parametric Down-Conversion in Bragg Reflection Waveguide Edge Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(7): 074204
[9] Jiang-Peng Shi, Jian-Guo Xin, Jun Liu, Jia-Bin Chen, Sher Zaman. A 526mJ Subnanosecond Pulsed Hybrid-Pumped Nd:YAG Laser[J]. Chin. Phys. Lett., 2017, 34(7): 074204
[10] Chuan-Wei Liu, Jin-Chuan Zhang, Fang-Liang Yan, Zhi-Wei Jia, Zhi-Bin Zhao, Ning Zhuo, Feng-Qi Liu, Zhan-Guo Wang. External Cavity Tuning of Coherent Quantum Cascade Laser Array Emitting at $\sim$7.6μm[J]. Chin. Phys. Lett., 2017, 34(3): 074204
[11] Xi-Kui Ren, Chen-Lin Du, Chun-Bo Li, Li Yu, Jun-Qing Zhao, Shuang-Chen Ruan. Silicon Wafer: a Direct Output Coupler in Tm:YLF Laser[J]. Chin. Phys. Lett., 2016, 33(11): 074204
[12] Yi-Nan Lin, Wen-Tan Fang, Chun Gu, Li-Xin Xu. Wideband All-Polarization-Maintaining Yb-Doped Mode-Locked Fiber Laser Using a Nonlinear Optical Loop Mirror[J]. Chin. Phys. Lett., 2016, 33(05): 074204
[13] Jing Wu, You-Lun Ju, Tong-Yu Dai, Zhen-Guo Zhang, Bao-Quan Yao, Yue-Zhu Wang. Development of a Single-Longitudinal-Mode Ho:YAG Laser Based on Corner Cube[J]. Chin. Phys. Lett., 2016, 33(04): 074204
[14] TIAN Zhao-Shuo, MIAO Jie-Guang, XU Zhi-Jing, QU Ting, FU Shi-You. Fully Immersing Water-Cooled Radial Slab Laser and its Incoherent Beam Combination[J]. Chin. Phys. Lett., 2015, 32(12): 074204
[15] XU Ling, TAN Yi-Dong, ZHANG Shu-Lian, SUN Li-Qun. Measurement of Refractive Index Ranging from 1.42847 to 2.48272 at 1064 nm Using a Quasi-Common-Path Laser Feedback System[J]. Chin. Phys. Lett., 2015, 32(09): 074204
Viewed
Full text


Abstract