Chin. Phys. Lett.  2019, Vol. 36 Issue (7): 075201    DOI: 10.1088/0256-307X/36/7/075201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Electron-Electron Collision Term Describing the Reflections Induced Scattering in a Magnetized Plasma
Chao Dong1,2**, Ding Li1,3,2**, Chang Jiang1,2
1Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
3Songshan Lake Materials Laboratory, Dongguan 523808
Cite this article:   
Chao Dong, Ding Li, Chang Jiang 2019 Chin. Phys. Lett. 36 075201
Download: PDF(437KB)   PDF(mobile)(434KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract For an electron-electron collision with characteristic scale length larger than the relative gyro-radius of the two colliding electrons, when the initial relative parallel kinetic energy cannot surmount the Coulomb repulsive potential, reflection will occur with interchange of the parallel velocities of the two electrons after the collision. The Fokker–Planck approach is employed to derive the electron collision term $\mathcal{C}_{\rm R}$ describing parallel velocity scattering due to the reflections for a magnetized plasma where the average electron gyro-radius is much smaller than the Debye length but much larger than the Landau length. The electron parallel velocity friction and diffusion coefficients due to the reflections are evaluated, which are found not to depend on the electron perpendicular velocity. By studying the temporal evolution of the $H$ quantity due to $\mathcal{C}_{\rm R}$, it is found that $\mathcal{C}_{\rm R}$ eventually makes the system relax to a state in which the electron parallel velocity distribution is decoupled from the perpendicular velocity distribution.
Received: 02 February 2019      Published: 20 June 2019
PACS:  52.20.Fs (Electron collisions)  
  52.25.Dg (Plasma kinetic equations)  
  52.25.Xz (Magnetized plasmas)  
Fund: Supported by the National MCF Energy R&D Program under Grant No 2018YFE0311300, the National Natural Science Foundation of China under Grant Nos 11875067, 11835016, 11705275, 11675257 and 11675256, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB16010300, the Key Research Program of Frontier Science of Chinese Academy of Sciences under Grant No QYZDJ-SSW-SYS016, and the External Cooperation Program of Chinese Academy of Sciences under Grant No 112111KYSB20160039.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/7/075201       OR      https://cpl.iphy.ac.cn/Y2019/V36/I7/075201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chao Dong
Ding Li
Chang Jiang
[1]Geller D K and Weisheit J C 1997 Phys. Plasmas 4 4258
[2]Nersisyan H B and Zwicknagel G 2009 Phys. Rev. E 79 066405
[3]Nersisyan H B and Zwicknagel G 2010 Phys. Plasmas 17 082314
[4]Cohen S, Sarid S E and Gedalin M 2018 Phys. Plasmas 25 012311
[5]O'Neil T M 1983 Phys. Fluids 26 2128
[6]O'Neil T M and Hjorth P G 1985 Phys. Fluids 28 3241
[7]Psimopoulos M and Li D 1992 Proc. R. Soc. London Ser. A 437 55
[8]Dubin D H E 2014 Phys. Plasmas 21 052108
[9]Hurt J L, Carpenter P T, Taylor C L and Robicheaux F 2008 J. Phys. B: At. Mol. Opt. Phys. 41 165206
[10]Rostoker N and Rosenbluth M N 1960 Phys. Fluids 3 1
[11]Rostoker N 1960 Phys. Fluids 3 922
[12]Montgomery D, Turner L and Joyce G 1974 Phys. Fluids 17 954
[13]Hassan M H A and Watson C J H 1977 Plasma Phys. 19 237
[14]Klimontovich Yu L 1982 Kinetic Theory of Nonideal Gases and Nonideal Plasmas (New York: Pergamon Press)
[15]Yoon P H 2016 Phys. Plasmas 23 072114
[16]Dong C, Zhang W L and Li D 2016 Phys. Plasmas 23 082105
[17]Dong C, Zhang W L, Cao J T and Li D 2017 Phys. Plasmas 24 122120
[18]Chandrasekhar S 1943 Rev. Mod. Phys. 15 1
[19]Cohen R S, Spitzer L and Routly P M 1950 Phys. Rev. 80 230
[20]Spitzer L and Härm R 1953 Phys. Rev. 89 977
[21]Rosenbluth M N, MacDonald W M and Judd D L 1957 Phys. Rev. 107 1
[22]Ware A A 1989 Phys. Rev. Lett. 62 51
[23]Montgomery D, Tidman D 1964 Plasma Kinetic Theory (New York: McGraw-Hill and Inc.)
Related articles from Frontiers Journals
[1] Chang Jiang, Chao Dong, and Ding Li. Transverse Rutherford Scattering of Electron-Ion Collision in a Uniformly Magnetized Plasma[J]. Chin. Phys. Lett., 2022, 39(2): 075201
[2] Deng-Hong Zhang, Lu-You Xie, Jun Jiang, Chen-Zhong Dong. Influence of Debye Plasma on the KLL Dielectronic Recombination of H-Like Helium Ions[J]. Chin. Phys. Lett., 2019, 36(8): 075201
[3] Bin Duan, Muhammad Abbas Bari, Ze-Qing Wu, Jun Yan, Jian-Guo Wang. Stark-Broadened Profiles of the Spectral Line $P_ \alpha$ in He II Ions[J]. Chin. Phys. Lett., 2016, 33(03): 075201
[4] SUN Quan, JIANG Hong-Bing, LIU Yi, ZHOU Yong-Heng, YANG Hong, GONG Qi-Huang. Relaxation of Dense Electron Plasma Induced by Femtosecond Laser in Dielectric Materials[J]. Chin. Phys. Lett., 2006, 23(1): 075201
[5] ZENG Jiao-Long, ZHAO Gang, YUAN Jian-Min,. X-Ray Emission Spectra of Ni-Like Gold Ions under Coronal Plasma Condition[J]. Chin. Phys. Lett., 2005, 22(8): 075201
[6] ZHANG Shu, HU Xi-Wei. New Microwave Diagnostic Theory for Measurement of Electron Density in Atmospheric Plasmas[J]. Chin. Phys. Lett., 2005, 22(1): 075201
[7] IN Lie, WU Bin, ZHANG Peng, WANG Yong-Qing. Analysis of Instabilities in Non-Equilibrium Plasmas[J]. Chin. Phys. Lett., 2004, 21(10): 075201
[8] DONG Guo-Xuan, ZENG Jiao-Long. Nickel-Like Samarium 4d-4p X-Ray Laser Gain in Laser Plasmas[J]. Chin. Phys. Lett., 2004, 21(9): 075201
[9] MA Jie, PU Yi-Kang. Tuning Effect on the Electron Energy Distribution Function of an Inert Gas Mixture in Nitrogen Inductively Coupled Plasma Discharges[J]. Chin. Phys. Lett., 2003, 20(9): 075201
[10] KANG Zheng-De, PU Yi-Kang. Electron Temperature Control in Inductively Coupled Nitrogen Plasmas by Adding Argon/Helium[J]. Chin. Phys. Lett., 2002, 19(8): 075201
[11] HU Xiwei. A New Turbulent Collision Integral in Plasma Kinetic Equation[J]. Chin. Phys. Lett., 1992, 9(4): 075201
Viewed
Full text


Abstract