Chin. Phys. Lett.  2019, Vol. 36 Issue (7): 074101    DOI: 10.1088/0256-307X/36/7/074101
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Spatial Characteristics of Thomson Scattering Spectra in Laser and Magnetic Fields
Li Zhao1, Zhi-Jing Chen1, Hai-Bo Sang1,2, Bai-Song Xie1,2**
1Key Laboratory of Beam Technology of the Ministry of Education, and College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875
2Beijing Radiation Center, Beijing 100875
Cite this article:   
Li Zhao, Zhi-Jing Chen, Hai-Bo Sang et al  2019 Chin. Phys. Lett. 36 074101
Download: PDF(786KB)   PDF(mobile)(778KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Spatial characteristics of Thomson scattering spectra are studied for an electron moving in the circularly polarized laser field in the presence of a strong uniform magnetic field. The results show that the angular distributions of the spectra with respect to the azimuthal and polar angles exhibit different symmetries, respectively, which depend on the fields and electron parameters sensitively and significantly. Moreover, for relatively large parameters such as high laser intensity, high magnetic resonance parameter as well as large initial momentum of electron, the two lobes in spectra tend to the laser-propagating direction so that the radiation can be collimated in the forward direction. Furthermore, an important finding is that by choosing the appropriate fields and initial momentum of electron, the high frequency part of the Thomson scattering spectra can reach the frequency range of soft x-ray, in which a high radiation power per solid angle as $\sim$$10^{11}$ a.u. can be obtained.
Received: 09 May 2019      Published: 20 June 2019
PACS:  41.60.-m (Radiation by moving charges)  
  42.55.Vc (X- and γ-ray lasers)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11875007 and 11305010.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/7/074101       OR      https://cpl.iphy.ac.cn/Y2019/V36/I7/074101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Li Zhao
Zhi-Jing Chen
Hai-Bo Sang
Bai-Song Xie
[1]Perry M D and Mourou G A 1994 Science 264 917
[2]Leemans W P, Nagler B, Gonsalves A J, Tóth C, Nakamura K, Geddes C G R, Easrey C B and Hooker S M 2006 Nat. Phys. 2 696
[3]Bartels R, Backus S, Zeek E, Misoguti L, Vdovin G, Christov I P, Murnane M M and Kapteyn H C 2000 Nature 406 164
[4]Umstadter D 2001 Phys. Plasmas 8 1774
[5]Emma P, Akre R, Arthur J, Bionta R, Bostedt C, Bozek J, Brachmann A, Bucksbaum P, Coffee R, Decker F J et al 2010 Nat. Photon. 4 641
[6]Milburn R H 1963 Phys. Rev. Lett. 10 75
[7]Kaplan A E and Shkolnikov P L 2002 Phys. Rev. Lett. 88 074801
[8]Lan P F, Lu P X, Cao W and Wang X L 2005 Phys. Rev. E 72 066501
[9]Schwoerer H, Liesfeld B, Schlenvoigt H P, Amthor K U and Sauerbrey R 2006 Phys. Rev. Lett. 96 014802
[10]Glenzer S H and Redmer R 2009 Rev. Mod. Phys. 81 1625
[11]Chen S, Powers N D, Ghebregziabher I, Maharjan C M, Liu C, Golovin G, Banerjee S, Zhang J, Cunningham N, Moorti A, Clarke S, Pozzi S and Umstadter D P 2013 Phys. Rev. Lett. 110 155003
[12]Sarri G, Corvan D J, Schumaker W, Cole J M, Piazza A D, Ahmed H, Harvey C, Keitel C H, Krushelnick K, Mangles S P D, Najmudin Z, Symes D, Thomas A G R, Yeung M, Zhao Z and Zepf M 2014 Phys. Rev. Lett. 113 224801
[13]Yan W C, Fruhling C, Golovin G, Haden D, Luo J, Zhang P, Zhao B Z, Zhang J, Liu C, Chen M, Chen S Y, Banerjee S and Umstadter D 2017 Nat. Photon. 11 514
[14]Salamin Y I and Faisal F H M 1998 Phys. Rev. A 58 3221
[15]Salamin Y I 1999 Phys. Rev. A 60 3276
[16]Faisal F H M and Salamin Y I 1999 Phys. Rev. A 60 2505
[17]Salamin Y I and Faisal F H M 2000 Phys. Rev. A 61 043801
[18]Salamin Y I, Faisal F H M and Keitel C H 2000 Phys. Rev. A 62 053809
[19]He F, Lau Y Y, Umstadter D P and Strickler T 2002 Phys. Plasmas 9 4325
[20]Lau Y Y, He F, Umstadter D P and Kowalczyk R 2003 Phys. Plasmas 10 2155
[21]He F, Lau Y Y, Umstadter D P and Kowalczyk R 2003 Phys. Rev. Lett. 90 055002
[22]Lan P F, Lu P X and Cao W 2007 Plasma. Sci. Technol. 9 143
[23]Fu Y J, Jiang C, Lv C, Wan F, Sang H B and Xie B S 2016 Phys. Rev. A 94 052102
[24]Jiang C, Xie H Z, Sang H B and Xie B S 2017 Europhys. Lett. 117 44002
[25]Li J, Xie B S, Sang H B, Hong X R, Zhang S and Yu M Y 2009 Appl. Phys. Lett. 95 161105
[26]Jackson J D 1975 Classical Electrodynamics (New York: Wiley)
Related articles from Frontiers Journals
[1] Yi Liu, Shaojie Liu, Aurélien Houard, André Mysyrowicz, Vladimir T. Tikhonchuk. Terahertz Radiation from a Longitudinal Electric Field Biased Femtosecond Filament in Air *[J]. Chin. Phys. Lett., 0, (): 074101
[2] Yi Liu, Shaojie Liu, Aurélien Houard, André Mysyrowicz, Vladimir T. Tikhonchuk. Terahertz Radiation from a Longitudinal Electric Field Biased Femtosecond Filament in Air[J]. Chin. Phys. Lett., 2020, 37(6): 074101
[3] A. R. Aramyan, S. A. Aramyan, S. G. Bilén, L. Sh. Grigoryan, H. F. Khachatryan. Radiation of Ultra Low Frequency Electromagnetic Waves from Atmosphere under the Influence of Strong Shock Waves[J]. Chin. Phys. Lett., 2015, 32(03): 074101
[4] LI Liang-Sheng, YIN Hong-Cheng, ZHENG Ning. Nonlinear Model of Photoconductive Antennas[J]. Chin. Phys. Lett., 2013, 30(6): 074101
Viewed
Full text


Abstract