ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Secular Motion Frequencies of $^{9}$Be$^{+}$ Ions and $^{40}$Ca$^{+}$ Ions in Bi-component Coulomb Crystals |
Hai-Xia Li1,2, Min Li1,2, Qian-Yu Zhang1,2, Xin Tong1** |
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Hai-Xia Li, Min Li, Qian-Yu Zhang et al 2019 Chin. Phys. Lett. 36 073701 |
|
|
Abstract We obtain bi-component Coulomb crystals using laser-cooled $^{40}$Ca$^{+}$ ions to sympathetically cool $^{9}$Be$^{+}$ ions in a linear Paul trap. The shell structures of the bi-component Coulomb crystals are investigated. The secular motion frequencies of the two different ions are determined and compared with those in the single-component Coulomb crystals. In the radial direction, the resonant motion frequencies of the two ionic species shift toward each other due to the strong motion coupling in the ion trap. In the axial direction, the motion frequency of the laser-cooled $^{40}$Ca$^{+}$ is impervious to the sympathetically cooled $^{9}$Be$^{+}$ ions because the spatially separation of the two different ionic species leads to the weak motion coupling in the axial direction.
|
|
Received: 17 April 2019
Published: 20 June 2019
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 91636216, 11504410 and 11474317, and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant No XDB21020200. |
|
|
[1] | Raizen M G et al 1992 Phys. Rev. A 45 6493 | [2] | Drewsen M et al 1998 Phys. Rev. Lett. 81 2878 | [3] | Pollock E L and Hansen J P 1973 Phys. Rev. A 8 3110 | [4] | Slattery W L et al 1980 Phys. Rev. A 21 2087 | [5] | Okada K et al 2007 Phys. Rev. A 75 033409 | [6] | Zhao X Z et al 2006 Phys. Rev. A 73 033412 | [7] | Groot-Berning K et al 2019 Phys. Rev. A 99 023420 | [8] | Chen J S et al 2017 Phys. Rev. Lett. 118 053002 | [9] | Wübbena J B et al 2012 Phys. Rev. A 85 043412 | [10] | Kimura N et al 2011 Phys. Rev. A 83 033422 | [11] | Ostendorf A, Zhang C B, Wilson M A, Offenberg D, Roth B and Schiller S 2006 Phys. Rev. Lett. 97 243005 | [12] | Meir Z, Pinkas M, Sikorsky T, Ben-shlomi R, Akerman N and Ozeri R 2018 Phys. Rev. Lett. 121 053402 | [13] | Tong X, Winney A H and Willitsch S 2010 Phys. Rev. Lett. 105 143001 | [14] | Alighanbari S, Hansen M G, Korobov V I and Schiller S 2018 Nat. Phys. 14 555 | [15] | Tong X, Wild D and Willitsch S 2011 Phys. Rev. A 83 023415 | [16] | Baba T and Waki L 2002 J. Chem. Phys. 116 1858 | [17] | Kas M, Loreau J, Liévin J and Vaeck N 2017 J. Chem. Phys. 146 194309 | [18] | Schneider C, Schowalter S J, Chen K, Sullivan S T and Hudson E R 2014 Phys. Rev. Appl. 2 034013 | [19] | Deb N, Pollum L L, Smith A D, Keller M, Rennick C J, Heazlewood B R and Softley T P 2015 Phys. Rev. A 91 033408 | [20] | Matthey T, Hansen J P and Drewsen M 2003 Phys. Rev. Lett. 91 165001 | [21] | Berkel D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025 | [22] | Li H X, Zhang Y, He S G and Tong X 2019 Chin. J. Phys. 60 61 | [23] | Du L J, Song H F, Li H X, Chen S L, Chen T, Sun H Y, Huang Y, Tong X, Guan H and Gao K L 2015 Chin. Phys. B 24 113703 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|