Chin. Phys. Lett.  2019, Vol. 36 Issue (6): 068501    DOI: 10.1088/0256-307X/36/6/068501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Silicon on Insulator with Highly Uniform Top Si Fabricated by H/He Coimplantation
Xin Su1,2, Nan Gao1,2, Meng Chen3, Hong-Tao Xu3, Xing Wei1,2,3**, Zeng-Feng Di1,2**
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
2University of Chinese Academy of Sciences, Beijing 100049
3Shanghai Simgui Technology Co., Ltd., Shanghai 201815
Cite this article:   
Xin Su, Nan Gao, Meng Chen et al  2019 Chin. Phys. Lett. 36 068501
Download: PDF(1034KB)   PDF(mobile)(1030KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Silicon on insulator with highly uniform top Si is fabricated by co-implantation of H$^{+}$ and He$^{+}$ ions. Compared with the conventional ion-slicing process with H implantation only, the co-implanted specimens whose He depth is deeper than H profile have the top Si layer with better uniformity after splitting. In addition, the splitting occurs at the position that the maximum concentration peak of H overlaps with the secondary concentration peak of He after annealing. It is suggested that the H/He co-implantation technology is a promising approach for fabricating fully depleted silicon on insulator.
Received: 11 February 2019      Published: 18 May 2019
PACS:  85.40.Ry (Impurity doping, diffusion and ion implantation technology)  
  81.20.-n (Methods of materials synthesis and materials processing)  
  81.05.Cy (Elemental semiconductors)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 61674159, the Program of National Science and Technology Major Project under Grant No 2016ZX02301003, the Shanghai Academic/Technology Research Leader under Grant Nos 16XD1404200 and 17XD1424500, the Key Research Project of Frontier Science of Chinese Academy of Sciences under Grant No QYZDB-SSW-JSC021, and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant No XDB30030000.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/6/068501       OR      https://cpl.iphy.ac.cn/Y2019/V36/I6/068501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xin Su
Nan Gao
Meng Chen
Hong-Tao Xu
Xing Wei
Zeng-Feng Di
[1]Bruel M 1995 Electron. Lett. 31 1201
[2]Grisolia J et al 2000 Appl. Phys. Lett. 76 852
[3]Nguyen P et al 2005 J. Appl. Phys. 97 083527
[4]Agarwal A et al 1998 Appl. Phys. Lett. 72 1086
[5]Weldon M K, Collot M, Chabal Y J et al 1998 Appl. Phys. Lett. 73 3721
[6]Huang L, Tong Q, Chao Y et al 1999 Appl. Phys. Lett. 74 982
[7]Aspar B, Bruel M, Moriceau H et al 1997 Microelectron. Eng. 36 233
[8]Reboh S, Schaurich F, Declemy A et al 2010 J. Appl. Phys. 108 023502
[9]Moutanabbir O, Terreault B, Chicoine M et al 2007 Phys. Rev. B 75 075201
[10]Nguyen P, Bourdelle K K, Maurice T et al 2007 J. Appl. Phys. 101 033506
[11]Daghbouj N, Cherkashin N, Darras F X et al 2016 J. Appl. Phys. 119 135308
[12]Cherkashin N, Daghbouj N, Seine G et al 2018 J. Appl. Phys. 123 161556
[13]Cherkashin N, Daghbouj N, Darras F X et al 2015 J. Appl. Phys. 118 245301
[14]Schwarzenbach W, Cauchy X, Bonnin O et al 2011 ECS Trans. 35 239
[15]Ziegler J F and Biersack J P, See http://www.srim.org for SRIM computer code
[16]Bedell S W and Lanford W A 2001 J. Appl. Phys. 90 1138
[17]H?chbauer T F, Misra A et al 2006 Nucl. Instrum. Methods Phys. Res. 242 623
[18]Terreault B 2007 Phys. Status Solidi A 204 2129
[19]Moutanabbir O, Terreault B, Chicoine M et al 2005 Appl. Phys. A 80 1455
[20]Moutanabbir O and Terreault B 2005 Appl. Phys. Lett. 86 051906
[21]Personnic S, Bourdelle K K, Letertre F et al 2008 J. Appl. Phys. 103 023508
Related articles from Frontiers Journals
[1] LÜ Wei-Feng, WANG Guang-Yi, LIN Mi, SUN Ling-Ling. Statistical Modeling of Gate Capacitance Variations Induced by Random Dopants in Nanometer MOSFETs Reserving Correlations[J]. Chin. Phys. Lett., 2015, 32(10): 068501
[2] DU Yan-Dong, HAN Wei-Hua, YAN Wei, YANG Fu-Hua. Impact of CHF3 Plasma Treatment on AlGaN/GaN HEMTs Identified by Low-Temperature Measurement[J]. Chin. Phys. Lett., 2014, 31(04): 068501
[3] JIN Xiao-Shi, LIU Xi, KWON Hyuck-In, LEE Jong-Ho. A Continuous Current Model of Accumulation Mode (Junctionless) Cylindrical Surrounding-Gate Nanowire MOSFETs[J]. Chin. Phys. Lett., 2013, 30(3): 068501
[4] LIANG Zhong-Zhu, LIANG Jing-Qiu, JIA Xiao-Peng. Effects of NaN3 Added in Fe-C System on Inclusion and Impurity of Diamond Synthesized at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2009, 26(3): 068501
[5] LI Bing-Sheng, ZHANG Chong-Hong, ZHOU Li-Hong, YANG Yi-Tao,. Effects of Helium and Oxygen Common Implantation in Silicon Wafer[J]. Chin. Phys. Lett., 2008, 25(10): 068501
[6] LIANG Zhong-Zhu, JIA Xiao-Peng, LIANG Jing-Qiu. Formation of Mixture of A and C Centres in Diamond Synthesized with Fe90Ni10-C-High-Content Additive NaN3 by HPHT[J]. Chin. Phys. Lett., 2007, 24(12): 068501
[7] LIANG Zhong-Zhu, JIA Xiao-Peng, Hisao Kanda, MA Hong-An, WANG Dong-Mei, LIU Wan-Qiang, YU Run-Ze. A New Dopant of NaN3 for High-Concentration-Nitrogen Diamond Synthesized by HPHT[J]. Chin. Phys. Lett., 2007, 24(2): 068501
[8] ZHANG En-Xia, YI Wan-Bing, LIU Xiang-Hua, CHEN Meng, LIU Zhong-Li, Wang Xi. Silicon-on-Insulating Multi-Layers for Total-Dose Irradiation Hardness[J]. Chin. Phys. Lett., 2004, 21(8): 068501
[9] LI Guo-Qiang, JIE Wan-Qi, GU Zhi, YANG Ge, WANG Tao. CdZnTe Energy Levels Induced by Doping of Indium[J]. Chin. Phys. Lett., 2004, 21(2): 068501
[10] YI Wan-Bing, CHEN Jing, CHEN Meng, WANG Xi, ZOU Shi-Chang. Effect of Hydrogen Implantation on SIMOX SOI Materials[J]. Chin. Phys. Lett., 2004, 21(1): 068501
Viewed
Full text


Abstract