CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Silicon on Insulator with Highly Uniform Top Si Fabricated by H/He Coimplantation |
Xin Su1,2, Nan Gao1,2, Meng Chen3, Hong-Tao Xu3, Xing Wei1,2,3**, Zeng-Feng Di1,2** |
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 2University of Chinese Academy of Sciences, Beijing 100049 3Shanghai Simgui Technology Co., Ltd., Shanghai 201815
|
|
Cite this article: |
Xin Su, Nan Gao, Meng Chen et al 2019 Chin. Phys. Lett. 36 068501 |
|
|
Abstract Silicon on insulator with highly uniform top Si is fabricated by co-implantation of H$^{+}$ and He$^{+}$ ions. Compared with the conventional ion-slicing process with H implantation only, the co-implanted specimens whose He depth is deeper than H profile have the top Si layer with better uniformity after splitting. In addition, the splitting occurs at the position that the maximum concentration peak of H overlaps with the secondary concentration peak of He after annealing. It is suggested that the H/He co-implantation technology is a promising approach for fabricating fully depleted silicon on insulator.
|
|
Received: 11 February 2019
Published: 18 May 2019
|
|
PACS: |
85.40.Ry
|
(Impurity doping, diffusion and ion implantation technology)
|
|
81.20.-n
|
(Methods of materials synthesis and materials processing)
|
|
81.05.Cy
|
(Elemental semiconductors)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 61674159, the Program of National Science and Technology Major Project under Grant No 2016ZX02301003, the Shanghai Academic/Technology Research Leader under Grant Nos 16XD1404200 and 17XD1424500, the Key Research Project of Frontier Science of Chinese Academy of Sciences under Grant No QYZDB-SSW-JSC021, and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant No XDB30030000. |
|
|
[1] | Bruel M 1995 Electron. Lett. 31 1201 | [2] | Grisolia J et al 2000 Appl. Phys. Lett. 76 852 | [3] | Nguyen P et al 2005 J. Appl. Phys. 97 083527 | [4] | Agarwal A et al 1998 Appl. Phys. Lett. 72 1086 | [5] | Weldon M K, Collot M, Chabal Y J et al 1998 Appl. Phys. Lett. 73 3721 | [6] | Huang L, Tong Q, Chao Y et al 1999 Appl. Phys. Lett. 74 982 | [7] | Aspar B, Bruel M, Moriceau H et al 1997 Microelectron. Eng. 36 233 | [8] | Reboh S, Schaurich F, Declemy A et al 2010 J. Appl. Phys. 108 023502 | [9] | Moutanabbir O, Terreault B, Chicoine M et al 2007 Phys. Rev. B 75 075201 | [10] | Nguyen P, Bourdelle K K, Maurice T et al 2007 J. Appl. Phys. 101 033506 | [11] | Daghbouj N, Cherkashin N, Darras F X et al 2016 J. Appl. Phys. 119 135308 | [12] | Cherkashin N, Daghbouj N, Seine G et al 2018 J. Appl. Phys. 123 161556 | [13] | Cherkashin N, Daghbouj N, Darras F X et al 2015 J. Appl. Phys. 118 245301 | [14] | Schwarzenbach W, Cauchy X, Bonnin O et al 2011 ECS Trans. 35 239 | [15] | Ziegler J F and Biersack J P, See http://www.srim.org for SRIM computer code | [16] | Bedell S W and Lanford W A 2001 J. Appl. Phys. 90 1138 | [17] | H?chbauer T F, Misra A et al 2006 Nucl. Instrum. Methods Phys. Res. 242 623 | [18] | Terreault B 2007 Phys. Status Solidi A 204 2129 | [19] | Moutanabbir O, Terreault B, Chicoine M et al 2005 Appl. Phys. A 80 1455 | [20] | Moutanabbir O and Terreault B 2005 Appl. Phys. Lett. 86 051906 | [21] | Personnic S, Bourdelle K K, Letertre F et al 2008 J. Appl. Phys. 103 023508 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|