Chin. Phys. Lett.  2019, Vol. 36 Issue (6): 062101    DOI: 10.1088/0256-307X/36/6/062101
NUCLEAR PHYSICS |
Negative Parity States in $^{39}$Cl Configured by Crossing Major Shell Orbits
Long-Chun Tao1,2, Y. Ichikawa2, Cen-Xi Yuan3, Y. Ishibashi2,4, A. Takamine2, A. Gladkov2,5, T. Fujita2,6, K. Asahi2,7, T. Egami8, C. Funayama7, K. Imamura2,9, Jian-Ling Lou1, T. Kawaguchi2,8, S. Kojima7, T. Nishizaka8, T. Sato2,7, D. Tominaga8, Xiao-Fei Yang1, H. Yamazaki2, Yan-Lin Ye1**, H. Ueno2
1School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871
2RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
3Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082
4Department of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
5Department of Physics, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, South Korea
6Department of Physics, Osaka University, Machikaneyama 1-1 Toyonaka, Osaka 560-0034, Japan
7Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro, Tokyo 152-8551, Japan
8Department of Advanced Sciences, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan
9Department of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama, Kawasaki, Kanagawa 214-8571, Japan
Cite this article:   
Long-Chun Tao, Y. Ichikawa, Cen-Xi Yuan et al  2019 Chin. Phys. Lett. 36 062101
Download: PDF(512KB)   PDF(mobile)(491KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Traditional "magic numbers" were once regarded as immutable throughout the nuclear chart. However, unexpected changes were found for unstable nuclei around $N=20$. With both proton and neutron numbers around the magic number of 20, the neutron-rich $^{39}$Cl isotope provides a good test case for the study of the quantum-state evolution across the major shell. In the present work, the negative parity states in $^{39}$Cl are investigated through the $\beta$ decay spectroscopy of $^{39}$S. Newly observed $\gamma$ transitions together with a new state are assigned into the level scheme of $^{39}$Cl. The spin parity of ${5/2}^{-}$ for the lowest negative parity state in $^{39}$Cl is reconfirmed using the combined $\gamma$ transition information. These systematic observations of the negative parity states in $^{39}$Cl allow a comprehensive comparison with the theoretical descriptions. The lowest ${5/2}^{-}$ state in $^{39}$Cl remains exotic in terms of comparisons with existing theoretical calculations and with the neighboring isotopes having similar single-particle configurations. Further experimental and theoretical investigations are suggested.
Received: 30 April 2019      Published: 18 May 2019
PACS:  21.10.Hw (Spin, parity, and isobaric spin)  
  21.60.Cs (Shell model)  
  23.40.-s (β-decay;double β-decay; electron and muon capture)  
Fund: Supported by JSPS and CNRS under the Japan-France Research Cooperative Program, the Grant-in-Aid for Scientific Research on Innovative Areas "Toward new frontiers: Encounter and synergy of state-of-the-art astronomical detectors and exotic quantum beams", JSPS/MEXT KAKENHI under Grant Nos JP18HO3692 and JP18H05462, the National Key R&D Program of China (2018YFA0404403), and the National Natural Science Foundation of China Nos 11775316, 11535004, 11875074 and 11875073.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/6/062101       OR      https://cpl.iphy.ac.cn/Y2019/V36/I6/062101
[1]Elsasser W 1934 J. Phys. Radium 5 635
[2]Goeppert-Mayer M 1949 Phys. Rev. 75 1969
[3]Haxel O et al 1949 Phys. Rev. 75 1766
[4]Yang X F et al 2016 Phys. Rev. Lett. 116 182502
[5]Thibault C et al 1975 Phys. Rev. C 12 644
[6]Gade A and Glasmacher T 2008 Prog. Part. Nucl. Phys. 60 161
[7]Sorlin O and Porquet M G 2008 Prog. Part. Nucl. Phys. 61 602
[8]Chen J 2018 Nucl. Data Sheets 149 1
[9]Eswaran M A et al 1979 Nucl. Phys. A 325 269
[10]Wirjoamidjojo S and Kern B D 1967 Phys. Rev. 163 1094
[11]de Esch H P L and van der Leun C 1988 Nucl. Phys. A 476 316
[12]Lopes J S et al 1968 Nucl. Phys. A 109 241
[13]Jundt F et al 1971 Phys. Rev. C 4 498
[14]Doll P et al 1976 Nucl. Phys. A 263 210
[15]Hill J C et al 1980 Phys. Rev. C 21 384
[16]Szilner S et al 2013 Phys. Rev. C 87 054322
[17]Kubo T et al 1992 Nucl. Instrum. Methods Phys. Res. Sect. B 70 309
[18]Yano Y 2007 Nucl. Instrum. Methods Phys. Res. Sect. B 261 1009
[19]Li Z H et al 2009 Phys. Rev. C 80 054315
[20]Li Z H et al 2005 Phys. Rev. C 72 064327
[21]Lou J L et al 2008 Chin. Phys. Lett. 25 1992
[22]Onishi T K et al 2005 Phys. Rev. C 72 024308
[23]Ichikawa Y et al 2009 Phys. Rev. C 80 044302
[24]Warburton E K et al 1973 Phys. Rev. C 7 170
[25]Chen J 2018 Nucl. Data Sheets 152 45
[26]Nica N et al 2012 Nucl. Data Sheets 113 1
[27]Shimizu N 2013 arXiv:1310.5431v1
[28]Caurier E et al 2001 Phys. Lett. B 522 240
[29]Yuan C X et al 2012 Phys. Rev. C 85 064324
[30]Bissell M L et al 2014 Phys. Rev. Lett. 113 052502
[31]Utsuno Y et al 2012 Phys. Rev. C 86 051301(R)
[32]Utsuno Y et al 1999 Phys. Rev. C 60 054315
[33]Otsuka T 2013 Phys. Scr. T152 014007
Related articles from Frontiers Journals
[1] SONG Chun-Yan, YAO Jiang-Ming, MENG Jie, ** . Tensor Coupling Effects on Spin Symmetry in the Anti-Lambda Spectrum of Hypernuclei[J]. Chin. Phys. Lett., 2011, 28(9): 062101
[2] WANG Hai-Xia, ZHANG Yu-Hu, DING-Bing, ZHOU Xiao-Hong, ZHANG Ning-Tao, LIU Min-Liang, MA Ying-Jun, Y. Sasakiz, K. Yamada, H. Ohshima, S. Yokose, M. Ishizuka, T. Komatsubara, K. Furuno. A New High-Spin Level Scheme of 128I[J]. Chin. Phys. Lett., 2010, 27(8): 062101
[3] JIN Sun-Jun, , WANG You-Bao, WANG Bao-Xiang, BAI Xi-Xiang, FANG Xiao, GUO Bing, LI Er-Tao, LI Yun-Ju, LI Zhi-Hong, LIAN Gang, SU Jun, YAN Sheng-Quan, ZENG Sheng, YAO Ze-En, LIU Wei-Ping. Excited States in 18Ne Studied via 17F+p *[J]. Chin. Phys. Lett., 2010, 27(3): 062101
[4] SONG Chun-Yan, YAO Jiang-Ming, MENG Jie,. Spin Symmetry for Anti-Lambda Spectrum in Atomic Nucleus[J]. Chin. Phys. Lett., 2009, 26(12): 062101
[5] DONG Bao-Guo, GUO Hong-Chao. Band Structure in the Doubly Magic Nucleus 56Ni[J]. Chin. Phys. Lett., 2004, 21(11): 062101
[6] CHEN Yong-Jing, CHEN Yong-Shou, GAO Zao-Chun. Theoretical Simulation for Identical Bands[J]. Chin. Phys. Lett., 2004, 21(5): 062101
[7] GAO Zao-Chun, CHEN Yong-Shou, MENG Jie,. Rotational Band Structures of Non-Axial Octupole Deformed Shapes[J]. Chin. Phys. Lett., 2004, 21(5): 062101
[8] GAO Zao-Chun, CHEN Yong-Shou, MENG Jie,. Band Structures of the Axial and Triaxial Deformed Nuclei in the Reflection Asymmetric Shell Model [J]. Chin. Phys. Lett., 2002, 19(5): 062101
[9] LIU Zu-Hua, YANG Chun-Xiang, ZHOU Hong-Yu. Identical Superdeformed Bands in 171Ta and 173Re[J]. Chin. Phys. Lett., 2002, 19(1): 062101
[10] LU Jing-Bin, LIU Yun-Zuo, ZHANG Fan. Hyperbolic Dependence of Moment of Inertia on ω2 in Bands Involving vi13/2 Orbital and its Application in Configuration Identification[J]. Chin. Phys. Lett., 2000, 17(4): 062101
[11] LI Guang-sheng. Correction of the Directional Correlation of Oriented Nuclei for Detector Efficiency[J]. Chin. Phys. Lett., 1999, 16(11): 062101
[12] MA Ying-jun, LIU Yun-zuo. Low-Spin Identical Bands in Non-adjacent Odd-A and Even-Even Nuclei[J]. Chin. Phys. Lett., 1997, 14(4): 062101
[13] WU Xiao-guang, YANG Chun-xiang, ZHENG Hua, LIU Xiang-an, SHEN Cai-wan, CHEN Yong-shou, MA Ying-jun, LU Jing-bin, WEN Shu-xian, LI Guang-sheng, LI Sheng-gang, YUAN Guan-jun, WENG Pei-kun, LIU Yun-zuo. Superdeformed Bands in 167Lu and 171Ta[J]. Chin. Phys. Lett., 1997, 14(1): 062101
[14] ZHANG Yu-hu, ZHOU Xiao-hong, ZHAO Qing-zhong, SUN Xiang-fu, LEI Xiang-guo, GUO Ying-xiang, LIU Zhong, CHEN Xing-feng, ZHU Yong-tai, WEN Shu-xian*, YUAN Guan-jun*, LIU Xiang-an* . Signature Inversion of Yrast Band in Odd-Odd l62Lu Nucleus[J]. Chin. Phys. Lett., 1996, 13(4): 062101
Viewed
Full text


Abstract