Chin. Phys. Lett.  2019, Vol. 36 Issue (5): 057302    DOI: 10.1088/0256-307X/36/5/057302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Anisotropic Transport on Monolayer and Multilayer Phosphorene in the Presence of an Electric Field
Gufeng Fu, Fang Cheng**
Department of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410004
Cite this article:   
Gufeng Fu, Fang Cheng 2019 Chin. Phys. Lett. 36 057302
Download: PDF(826KB)   PDF(mobile)(819KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate theoretically the anisotropic quantum transport of electrons through an electric field on monolayer and multilayer phosphorene. Using the long-wavelength Hamiltonian with continuum approximation, we find that the transmission probability for transport through an electric field is an oscillating function of incident angle, electric field intensity, as well as the incident energy of electrons. By tuning the electric field intensity and incident angle, the channels can be transited from opaque to transparent. The conductance through the quantum waveguides depends sensitively on the transport direction because of the anisotropic effective mass, and the anisotropy of the conductance can be tuned by the electric field intensity and the number of layers. These behaviors provide us an efficient way to control the transport of phosphorene-based microstructures.
Received: 15 January 2019      Published: 17 April 2019
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11374002, the Scientific Research Fund of Hunan Provincial Education Department under Grant No 17A001, and the Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering of Changsha University of Science and Technology.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/5/057302       OR      https://cpl.iphy.ac.cn/Y2019/V36/I5/057302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Gufeng Fu
Fang Cheng
[1]Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[2]Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[3]Han C Q, Yao M Y, Bai X X, Miao L, Zhu F, Guan D D, Wang S, Gao C L, Liu C, Qian D, Liu Y and Jia J 2014 Phys. Rev. B 90 085101
[4]Lu W, Nan H, Hong J, Chen Y, Zhu C, Liang Z, Ma X, Ni Z, Jin C and Zhang Z 2014 Nano Res. 7 853
[5]Brown A and Rundqvist S 1965 Acta Crystallogr. 19 684
[6]Slater J C, Koster G F and Wood J H 1962 Phys. Rev. 126 1307
[7]Cartz L, Srinivasa S R, Riedner R J, Jorgensen J D and Worlton T G J 1979 Chem. Phys. 71 49010
[8]Ling X, Wang H, Huang S, Xia F and Dresselhaus M S 2015 Proc. Natl. Acad. Sci. USA 112 4523
[9]Maity A, Singh A, Sen P et al 2016 Phys. Rev. B 94 075422
[10]Rodin A S, Carvalho A and Castro Neto A H 2014 Phys. Rev. Lett. 112 176801
[11]Cai K, Liu L, Shi J and Qin Q H 2017 Mater. Des. 121 406
[12]Li X J, Yu J H, Luo K, Wu Z H and Yang W 2018 Nanotechnology 29 174001
[13]Liu H, Du Y, Deng Y and Ye P D 2015 Chem. Soc. Rev. 44 2732
[14]Churchill H O and Jarillo-Herrero P 2014 Nat. Nanotechnol. 9 330
[15]Reich E S 2014 Nature 506 19
[16]Castellanos-Gomez A, Vicarelli L, Prada E, Isl, J O, Narasimha-Acharya K L, Blanter S I, Groenendijk D J, Buscema M, Steele G A, Alvarez J V, Zandbergen H W, Palacios J J and van der Zant H S J 2014 2D Mater. 1 025001
[17]Buscema M, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S J and Castellanos-Gomez A 2014 Nano Lett. 14 3347
[18]Long M, Gao A, Wang P, Xia H, Ott C, Pan C, Fu Y, Liu E, Chen X, Lu W, Nilges T, Xu J, Wang X, Hu W and Miao F 2017 Sci. Adv. 3 e1700589
[19]Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[20]Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033
[21]Fei R and Yang L 2014 Nano Lett. 14 2884
[22]Hu S, Xiang J, Lv M, Zhang J, Zhao H, Li C, Chen G F, Wang W H and Sun P J 2018 Phys. Rev. B 97 045209
[23]Wang X, Jones A M, Seyler K L, Tran V, Jia Y, Zhao H, Wang H, Yang L, Xu X and Xia F 2015 Nat. Nanotechnol. 10 517
[24]Qin Z P, Hai T, Xie G Q, Ma J G, Yuan P, Qian L J, Li L, Zhao L M and Shen D Y 2018 Opt. Express 26 8224
[25]Elahi M, Khalij K, Tabatabaei S M, Pourfath M and Asgari R 2015 Phys. Rev. B 91 115412
[26]Cheng F and Yuan Y 2017 AIP Adv. 7 075310
[27]Ezawa M 2014 New J. Phys. 16 115004
[28]Rudenko A N, Yuan S J and Katsnelson M I 2015 Phys. Rev. B 92 085419
[29]Liu Y P, Qiu Z Z, Carvalho A, Bao Y, Xu H, Tan S J R, Liu W, Castro Neto A H, Loh K P and Lu J 2017 Nano Lett. 17 1970
[30]Cheng F and He B 2016 Chin. Phys. Lett. 33 057301
Related articles from Frontiers Journals
[1] Yeliang Wang. Orbit-Transfer Torque Switching[J]. Chin. Phys. Lett., 2022, 39(7): 057302
[2] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 057302
[3] Xing-Guo Ye, Peng-Fei Zhu, Wen-Zheng Xu, Nianze Shang, Kaihui Liu, and Zhi-Min Liao. Orbit-Transfer Torque Driven Field-Free Switching of Perpendicular Magnetization[J]. Chin. Phys. Lett., 2022, 39(3): 057302
[4] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 057302
[5] Fan Gao and Yongqing Li. Influence of Device Geometry on Transport Properties of Topological Insulator Microflakes[J]. Chin. Phys. Lett., 2021, 38(11): 057302
[6] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 057302
[7] Yi-Fan He , Lei-Xi Wang , Zhi-Xing Xiao , Ya-Wei Lv, Lei Liao , and Chang-Zhong Jiang . Normal Strain-Induced Tunneling Behavior Promotion in van der Waals Heterostructures[J]. Chin. Phys. Lett., 2020, 37(8): 057302
[8] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 057302
[9] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 057302
[10] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 057302
[11] Hong-Jun Wang, Yuan-Yuan Zhu, Jing Zhou, Yong Liu. Electrical Conductivity of a Single Electro-deposited CoZn Nanowire[J]. Chin. Phys. Lett., 2018, 35(7): 057302
[12] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 057302
[13] Li-Ling Zhou, Xue-Yun Zhou, Rong Cheng, Cui-Ling Hou, Hong Shen. Local Heating in a Normal-Metal–Quantum-Dot–Superconductor System without Electric Voltage Bias[J]. Chin. Phys. Lett., 2017, 34(6): 057302
[14] Shi-Li Yan, Zhi-Jian Xie, Jian-Hao Chen, Takashi Taniguchi, Kenji Watanabe. Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus Field Effect Transistors[J]. Chin. Phys. Lett., 2017, 34(4): 057302
[15] Yi Ren, Fang Cheng. Ballistic Transport through a Strained Region on Monolayer Phosphorene[J]. Chin. Phys. Lett., 2017, 34(2): 057302
Viewed
Full text


Abstract