Chin. Phys. Lett.  2019, Vol. 36 Issue (4): 040501    DOI: 10.1088/0256-307X/36/4/040501
GENERAL |
Variational Approach to Study $\mathcal{PT}$-Symmetric Solitons in a Bose–Einstein Condensate with Non-locality of Interactions
Wei Qi1**, Hai-Feng Li2, Zhao-Xin Liang3
1Department of Applied Physics, School of Arts and Sciences, Shaanxi University of Science and Technology, Xi'an 710021
2School of Science, Xi'an Technological University, Xi'an 710032
3Department of Physics, Zhejiang Normal University, Jinhua 321004
Cite this article:   
Wei Qi, Hai-Feng Li, Zhao-Xin Liang 2019 Chin. Phys. Lett. 36 040501
Download: PDF(538KB)   PDF(mobile)(533KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Considering the non-locality of interactions in a Bose–Einstein condensate, the existence and stability of solitons subject to a $\mathcal{PT}$-symmetric potential are discussed. In the framework of the variational approach, we investigate how the non-locality of interactions affects the self-localization and stability of a condensate with attractive two-body interactions. The results reveal that the non-locality of interactions dramatically influences the shape, width, and chemical potential of the condensate. Analytically variational computation also predicts that there exists a critical negative non-local interaction strength ($p_{\rm c} < 0$) with each fixed two-body interaction ($g_{0} < 0$), and there exists no bright soliton solution for $p_{0} < p_{\rm c}$. Furthermore, we study the effect of the non-locality interactions on the stability of the solitons using the Vakhitov–Kolokolov stability criterion. It is shown that for a positive non-local interaction ($p_{0}>0$), there always exist stable bright solitons in some appropriate parameter regimes.
Received: 25 December 2018      Published: 23 March 2019
PACS:  05.45.Yv (Solitons)  
  67.85.Hj (Bose-Einstein condensates in optical potentials)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11647017, 11805116 and 21703166, and the Science Research Fund of Shaanxi University of Science and Technology under Grant No BJ16-03.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/4/040501       OR      https://cpl.iphy.ac.cn/Y2019/V36/I4/040501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei Qi
Hai-Feng Li
Zhao-Xin Liang
[1]Moiseyev N 2011 Non-Hermitian Quantum Mechanics (Cambridge: Cambridge University Press)
[2]Kagan Y, Muryshev A E and Shlyapnikov G V 1998 Phys. Rev. Lett. 81 933
[3]Rapedius K 2013 J. Phys. B 46 125301
[4]Dast D, Haag D, Cartarius H and Wunner G 2014 Phys. Rev. A 90 052120
[5]Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[6]Graefe E M, Günther U, Korsch H J and Niederle A E 2008 J. Phys. A 41 255206
[7]Graefe E M 2012 J. Phys. A 45 444015
[8]Haag D, Dast D, Löhle A, Cartarius H, Main J and Wunner G 2014 Phys. Rev. A 89 023601
[9]Schwarz L, Cartarius H, Musslimani Z H, Main J and Wunner G 2017 Phys. Rev. A 95 053613
[10]Liu Y K and Li B 2017 Chin. Phys. Lett. 34 010202
[11]Wei X, Chen B and Wang C F 2016 Chin. Phys. Lett. 33 034205
[12]Pendse A and Bhattacharyay A 2018 J. Phys.: Condens. Matter 30 455602
[13]Papp S B, Pino J M, Wild R J, Ronen S, Wieman C E, Jin D S and Cornell E A 2008 Phys. Rev. Lett. 101 135301
[14]Claussen N R, Donley E A, Thompson S T and Wieman C E 2002 Phys. Rev. Lett. 89 010401
[15]García-Ripol J J, Konotop V V, Malomed B and Pérez-García V M 2003 Math. Comput. Simul. 62 21
[16]Fu H, Wang Y and Gao B 2003 Phys. Rev. A 67 053612
[17]Collin A, Massignan P and Pethick C J 2007 Phys. Rev. A 75 013615
[18]Zinner N T and Thøgersen M 2009 Phys. Rev. A 80 023607
[19]Qi X Y and Xue J K 2012 Phys. Rev. E 86 017601
[20]Qi W, Liang Z and Zhang Z 2013 J. Phys. B 46 175301
[21]Wamba E, Porsezian K, Mohamadou A and Kofané T C 2013 Phys. Lett. A 377 262
[22]Ankiewicz A, Akhmediev N and Devine N 2007 Opt. Fiber Technol. 13 91
[23]Devassy L, Jisha C P, Alberucci A and Kuriakose V C 2015 Phys. Rev. E 92 022914
[24]Jisha C P, Devassy L, Alberucci A and Kuriakose V C 2014 Phys. Rev. A 90 043855
[25]Vakhitov N and Kolokolov A A 1973 Radiophys. Quantum Electron. 16 783
[26]Malomed B A, Kaup D J and Gorder R A V 2012 Phys. Rev. E 85 026604
[27]Chen Z, Liu J, Fu S, Li Y and Malomed B A 2014 Opt. Express 22 29679
[28]Mertens F G, Cooper F, Arévalo E, Khare A, Saxena A and Bishop A R 2016 Phys. Rev. E 94 032213
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 040501
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 040501
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 040501
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 040501
[5] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 040501
[6] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 040501
[7] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 040501
[8] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 040501
[9] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 040501
[10] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 040501
[11] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 040501
[12] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 040501
[13] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 040501
[14] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 040501
[15] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 040501
Viewed
Full text


Abstract